]>
Commit | Line | Data |
---|---|---|
b6dbc2a1 IC |
1 | /* |
2 | JavaScript BigInteger library version 0.9.1 | |
3 | http://silentmatt.com/biginteger/ | |
4 | ||
5 | Copyright (c) 2009 Matthew Crumley <email@matthewcrumley.com> | |
6 | Copyright (c) 2010,2011 by John Tobey <John.Tobey@gmail.com> | |
7 | Licensed under the MIT license. | |
8 | ||
9 | Support for arbitrary internal representation base was added by | |
10 | Vitaly Magerya. | |
11 | */ | |
12 | ||
13 | /* | |
14 | File: biginteger.js | |
15 | ||
16 | Exports: | |
17 | ||
18 | <BigInteger> | |
19 | */ | |
20 | (function(exports) { | |
21 | "use strict"; | |
22 | /* | |
23 | Class: BigInteger | |
24 | An arbitrarily-large integer. | |
25 | ||
26 | <BigInteger> objects should be considered immutable. None of the "built-in" | |
27 | methods modify *this* or their arguments. All properties should be | |
28 | considered private. | |
29 | ||
30 | All the methods of <BigInteger> instances can be called "statically". The | |
31 | static versions are convenient if you don't already have a <BigInteger> | |
32 | object. | |
33 | ||
34 | As an example, these calls are equivalent. | |
35 | ||
36 | > BigInteger(4).multiply(5); // returns BigInteger(20); | |
37 | > BigInteger.multiply(4, 5); // returns BigInteger(20); | |
38 | ||
39 | > var a = 42; | |
40 | > var a = BigInteger.toJSValue("0b101010"); // Not completely useless... | |
41 | */ | |
42 | ||
43 | var CONSTRUCT = {}; // Unique token to call "private" version of constructor | |
44 | ||
45 | /* | |
46 | Constructor: BigInteger() | |
47 | Convert a value to a <BigInteger>. | |
48 | ||
49 | Although <BigInteger()> is the constructor for <BigInteger> objects, it is | |
50 | best not to call it as a constructor. If *n* is a <BigInteger> object, it is | |
51 | simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse> | |
52 | without a radix argument. | |
53 | ||
54 | > var n0 = BigInteger(); // Same as <BigInteger.ZERO> | |
55 | > var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123 | |
56 | > var n2 = BigInteger(123); // Create a new <BigInteger> with value 123 | |
57 | > var n3 = BigInteger(n2); // Return n2, unchanged | |
58 | ||
59 | The constructor form only takes an array and a sign. *n* must be an | |
60 | array of numbers in little-endian order, where each digit is between 0 | |
61 | and BigInteger.base. The second parameter sets the sign: -1 for | |
62 | negative, +1 for positive, or 0 for zero. The array is *not copied and | |
63 | may be modified*. If the array contains only zeros, the sign parameter | |
64 | is ignored and is forced to zero. | |
65 | ||
66 | > new BigInteger([5], -1): create a new BigInteger with value -5 | |
67 | ||
68 | Parameters: | |
69 | ||
70 | n - Value to convert to a <BigInteger>. | |
71 | ||
72 | Returns: | |
73 | ||
74 | A <BigInteger> value. | |
75 | ||
76 | See Also: | |
77 | ||
78 | <parse>, <BigInteger> | |
79 | */ | |
80 | function BigInteger(n, s, token) { | |
81 | if (token !== CONSTRUCT) { | |
82 | if (n instanceof BigInteger) { | |
83 | return n; | |
84 | } | |
85 | else if (typeof n === "undefined") { | |
86 | return ZERO; | |
87 | } | |
88 | return BigInteger.parse(n); | |
89 | } | |
90 | ||
91 | n = n || []; // Provide the nullary constructor for subclasses. | |
92 | while (n.length && !n[n.length - 1]) { | |
93 | --n.length; | |
94 | } | |
95 | this._d = n; | |
96 | this._s = n.length ? (s || 1) : 0; | |
97 | } | |
98 | ||
99 | BigInteger._construct = function(n, s) { | |
100 | return new BigInteger(n, s, CONSTRUCT); | |
101 | }; | |
102 | ||
103 | // Base-10 speedup hacks in parse, toString, exp10 and log functions | |
104 | // require base to be a power of 10. 10^7 is the largest such power | |
105 | // that won't cause a precision loss when digits are multiplied. | |
106 | var BigInteger_base = 10000000; | |
107 | var BigInteger_base_log10 = 7; | |
108 | ||
109 | BigInteger.base = BigInteger_base; | |
110 | BigInteger.base_log10 = BigInteger_base_log10; | |
111 | ||
112 | var ZERO = new BigInteger([], 0, CONSTRUCT); | |
113 | // Constant: ZERO | |
114 | // <BigInteger> 0. | |
115 | BigInteger.ZERO = ZERO; | |
116 | ||
117 | var ONE = new BigInteger([1], 1, CONSTRUCT); | |
118 | // Constant: ONE | |
119 | // <BigInteger> 1. | |
120 | BigInteger.ONE = ONE; | |
121 | ||
122 | var M_ONE = new BigInteger(ONE._d, -1, CONSTRUCT); | |
123 | // Constant: M_ONE | |
124 | // <BigInteger> -1. | |
125 | BigInteger.M_ONE = M_ONE; | |
126 | ||
127 | // Constant: _0 | |
128 | // Shortcut for <ZERO>. | |
129 | BigInteger._0 = ZERO; | |
130 | ||
131 | // Constant: _1 | |
132 | // Shortcut for <ONE>. | |
133 | BigInteger._1 = ONE; | |
134 | ||
135 | /* | |
136 | Constant: small | |
137 | Array of <BigIntegers> from 0 to 36. | |
138 | ||
139 | These are used internally for parsing, but useful when you need a "small" | |
140 | <BigInteger>. | |
141 | ||
142 | See Also: | |
143 | ||
144 | <ZERO>, <ONE>, <_0>, <_1> | |
145 | */ | |
146 | BigInteger.small = [ | |
147 | ZERO, | |
148 | ONE, | |
149 | /* Assuming BigInteger_base > 36 */ | |
150 | new BigInteger( [2], 1, CONSTRUCT), | |
151 | new BigInteger( [3], 1, CONSTRUCT), | |
152 | new BigInteger( [4], 1, CONSTRUCT), | |
153 | new BigInteger( [5], 1, CONSTRUCT), | |
154 | new BigInteger( [6], 1, CONSTRUCT), | |
155 | new BigInteger( [7], 1, CONSTRUCT), | |
156 | new BigInteger( [8], 1, CONSTRUCT), | |
157 | new BigInteger( [9], 1, CONSTRUCT), | |
158 | new BigInteger([10], 1, CONSTRUCT), | |
159 | new BigInteger([11], 1, CONSTRUCT), | |
160 | new BigInteger([12], 1, CONSTRUCT), | |
161 | new BigInteger([13], 1, CONSTRUCT), | |
162 | new BigInteger([14], 1, CONSTRUCT), | |
163 | new BigInteger([15], 1, CONSTRUCT), | |
164 | new BigInteger([16], 1, CONSTRUCT), | |
165 | new BigInteger([17], 1, CONSTRUCT), | |
166 | new BigInteger([18], 1, CONSTRUCT), | |
167 | new BigInteger([19], 1, CONSTRUCT), | |
168 | new BigInteger([20], 1, CONSTRUCT), | |
169 | new BigInteger([21], 1, CONSTRUCT), | |
170 | new BigInteger([22], 1, CONSTRUCT), | |
171 | new BigInteger([23], 1, CONSTRUCT), | |
172 | new BigInteger([24], 1, CONSTRUCT), | |
173 | new BigInteger([25], 1, CONSTRUCT), | |
174 | new BigInteger([26], 1, CONSTRUCT), | |
175 | new BigInteger([27], 1, CONSTRUCT), | |
176 | new BigInteger([28], 1, CONSTRUCT), | |
177 | new BigInteger([29], 1, CONSTRUCT), | |
178 | new BigInteger([30], 1, CONSTRUCT), | |
179 | new BigInteger([31], 1, CONSTRUCT), | |
180 | new BigInteger([32], 1, CONSTRUCT), | |
181 | new BigInteger([33], 1, CONSTRUCT), | |
182 | new BigInteger([34], 1, CONSTRUCT), | |
183 | new BigInteger([35], 1, CONSTRUCT), | |
184 | new BigInteger([36], 1, CONSTRUCT) | |
185 | ]; | |
186 | ||
187 | // Used for parsing/radix conversion | |
188 | BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split(""); | |
189 | ||
190 | /* | |
191 | Method: toString | |
192 | Convert a <BigInteger> to a string. | |
193 | ||
194 | When *base* is greater than 10, letters are upper case. | |
195 | ||
196 | Parameters: | |
197 | ||
198 | base - Optional base to represent the number in (default is base 10). | |
199 | Must be between 2 and 36 inclusive, or an Error will be thrown. | |
200 | ||
201 | Returns: | |
202 | ||
203 | The string representation of the <BigInteger>. | |
204 | */ | |
205 | BigInteger.prototype.toString = function(base) { | |
206 | base = +base || 10; | |
207 | if (base < 2 || base > 36) { | |
208 | throw new Error("illegal radix " + base + "."); | |
209 | } | |
210 | if (this._s === 0) { | |
211 | return "0"; | |
212 | } | |
213 | if (base === 10) { | |
214 | var str = this._s < 0 ? "-" : ""; | |
215 | str += this._d[this._d.length - 1].toString(); | |
216 | for (var i = this._d.length - 2; i >= 0; i--) { | |
217 | var group = this._d[i].toString(); | |
218 | while (group.length < BigInteger_base_log10) group = '0' + group; | |
219 | str += group; | |
220 | } | |
221 | return str; | |
222 | } | |
223 | else { | |
224 | var numerals = BigInteger.digits; | |
225 | base = BigInteger.small[base]; | |
226 | var sign = this._s; | |
227 | ||
228 | var n = this.abs(); | |
229 | var digits = []; | |
230 | var digit; | |
231 | ||
232 | while (n._s !== 0) { | |
233 | var divmod = n.divRem(base); | |
234 | n = divmod[0]; | |
235 | digit = divmod[1]; | |
236 | // TODO: This could be changed to unshift instead of reversing at the end. | |
237 | // Benchmark both to compare speeds. | |
238 | digits.push(numerals[digit.valueOf()]); | |
239 | } | |
240 | return (sign < 0 ? "-" : "") + digits.reverse().join(""); | |
241 | } | |
242 | }; | |
243 | ||
244 | // Verify strings for parsing | |
245 | BigInteger.radixRegex = [ | |
246 | /^$/, | |
247 | /^$/, | |
248 | /^[01]*$/, | |
249 | /^[012]*$/, | |
250 | /^[0-3]*$/, | |
251 | /^[0-4]*$/, | |
252 | /^[0-5]*$/, | |
253 | /^[0-6]*$/, | |
254 | /^[0-7]*$/, | |
255 | /^[0-8]*$/, | |
256 | /^[0-9]*$/, | |
257 | /^[0-9aA]*$/, | |
258 | /^[0-9abAB]*$/, | |
259 | /^[0-9abcABC]*$/, | |
260 | /^[0-9a-dA-D]*$/, | |
261 | /^[0-9a-eA-E]*$/, | |
262 | /^[0-9a-fA-F]*$/, | |
263 | /^[0-9a-gA-G]*$/, | |
264 | /^[0-9a-hA-H]*$/, | |
265 | /^[0-9a-iA-I]*$/, | |
266 | /^[0-9a-jA-J]*$/, | |
267 | /^[0-9a-kA-K]*$/, | |
268 | /^[0-9a-lA-L]*$/, | |
269 | /^[0-9a-mA-M]*$/, | |
270 | /^[0-9a-nA-N]*$/, | |
271 | /^[0-9a-oA-O]*$/, | |
272 | /^[0-9a-pA-P]*$/, | |
273 | /^[0-9a-qA-Q]*$/, | |
274 | /^[0-9a-rA-R]*$/, | |
275 | /^[0-9a-sA-S]*$/, | |
276 | /^[0-9a-tA-T]*$/, | |
277 | /^[0-9a-uA-U]*$/, | |
278 | /^[0-9a-vA-V]*$/, | |
279 | /^[0-9a-wA-W]*$/, | |
280 | /^[0-9a-xA-X]*$/, | |
281 | /^[0-9a-yA-Y]*$/, | |
282 | /^[0-9a-zA-Z]*$/ | |
283 | ]; | |
284 | ||
285 | /* | |
286 | Function: parse | |
287 | Parse a string into a <BigInteger>. | |
288 | ||
289 | *base* is optional but, if provided, must be from 2 to 36 inclusive. If | |
290 | *base* is not provided, it will be guessed based on the leading characters | |
291 | of *s* as follows: | |
292 | ||
293 | - "0x" or "0X": *base* = 16 | |
294 | - "0c" or "0C": *base* = 8 | |
295 | - "0b" or "0B": *base* = 2 | |
296 | - else: *base* = 10 | |
297 | ||
298 | If no base is provided, or *base* is 10, the number can be in exponential | |
299 | form. For example, these are all valid: | |
300 | ||
301 | > BigInteger.parse("1e9"); // Same as "1000000000" | |
302 | > BigInteger.parse("1.234*10^3"); // Same as 1234 | |
303 | > BigInteger.parse("56789 * 10 ** -2"); // Same as 567 | |
304 | ||
305 | If any characters fall outside the range defined by the radix, an exception | |
306 | will be thrown. | |
307 | ||
308 | Parameters: | |
309 | ||
310 | s - The string to parse. | |
311 | base - Optional radix (default is to guess based on *s*). | |
312 | ||
313 | Returns: | |
314 | ||
315 | a <BigInteger> instance. | |
316 | */ | |
317 | BigInteger.parse = function(s, base) { | |
318 | // Expands a number in exponential form to decimal form. | |
319 | // expandExponential("-13.441*10^5") === "1344100"; | |
320 | // expandExponential("1.12300e-1") === "0.112300"; | |
321 | // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000"; | |
322 | function expandExponential(str) { | |
323 | str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e"); | |
324 | ||
325 | return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) { | |
326 | c = +c; | |
327 | var l = c < 0; | |
328 | var i = n.length + c; | |
329 | x = (l ? n : f).length; | |
330 | c = ((c = Math.abs(c)) >= x ? c - x + l : 0); | |
331 | var z = (new Array(c + 1)).join("0"); | |
332 | var r = n + f; | |
333 | return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : ""); | |
334 | }); | |
335 | } | |
336 | ||
337 | s = s.toString(); | |
338 | if (typeof base === "undefined" || +base === 10) { | |
339 | s = expandExponential(s); | |
340 | } | |
341 | ||
342 | var prefixRE; | |
343 | if (typeof base === "undefined") { | |
344 | prefixRE = '0[xcb]'; | |
345 | } | |
346 | else if (base == 16) { | |
347 | prefixRE = '0x'; | |
348 | } | |
349 | else if (base == 8) { | |
350 | prefixRE = '0c'; | |
351 | } | |
352 | else if (base == 2) { | |
353 | prefixRE = '0b'; | |
354 | } | |
355 | else { | |
356 | prefixRE = ''; | |
357 | } | |
358 | var parts = new RegExp('^([+\\-]?)(' + prefixRE + ')?([0-9a-z]*)(?:\\.\\d*)?$', 'i').exec(s); | |
359 | if (parts) { | |
360 | var sign = parts[1] || "+"; | |
361 | var baseSection = parts[2] || ""; | |
362 | var digits = parts[3] || ""; | |
363 | ||
364 | if (typeof base === "undefined") { | |
365 | // Guess base | |
366 | if (baseSection === "0x" || baseSection === "0X") { // Hex | |
367 | base = 16; | |
368 | } | |
369 | else if (baseSection === "0c" || baseSection === "0C") { // Octal | |
370 | base = 8; | |
371 | } | |
372 | else if (baseSection === "0b" || baseSection === "0B") { // Binary | |
373 | base = 2; | |
374 | } | |
375 | else { | |
376 | base = 10; | |
377 | } | |
378 | } | |
379 | else if (base < 2 || base > 36) { | |
380 | throw new Error("Illegal radix " + base + "."); | |
381 | } | |
382 | ||
383 | base = +base; | |
384 | ||
385 | // Check for digits outside the range | |
386 | if (!(BigInteger.radixRegex[base].test(digits))) { | |
387 | throw new Error("Bad digit for radix " + base); | |
388 | } | |
389 | ||
390 | // Strip leading zeros, and convert to array | |
391 | digits = digits.replace(/^0+/, "").split(""); | |
392 | if (digits.length === 0) { | |
393 | return ZERO; | |
394 | } | |
395 | ||
396 | // Get the sign (we know it's not zero) | |
397 | sign = (sign === "-") ? -1 : 1; | |
398 | ||
399 | // Optimize 10 | |
400 | if (base == 10) { | |
401 | var d = []; | |
402 | while (digits.length >= BigInteger_base_log10) { | |
403 | d.push(parseInt(digits.splice(digits.length-BigInteger.base_log10, BigInteger.base_log10).join(''), 10)); | |
404 | } | |
405 | d.push(parseInt(digits.join(''), 10)); | |
406 | return new BigInteger(d, sign, CONSTRUCT); | |
407 | } | |
408 | ||
409 | // Do the conversion | |
410 | var d = ZERO; | |
411 | base = BigInteger.small[base]; | |
412 | var small = BigInteger.small; | |
413 | for (var i = 0; i < digits.length; i++) { | |
414 | d = d.multiply(base).add(small[parseInt(digits[i], 36)]); | |
415 | } | |
416 | return new BigInteger(d._d, sign, CONSTRUCT); | |
417 | } | |
418 | else { | |
419 | throw new Error("Invalid BigInteger format: " + s); | |
420 | } | |
421 | }; | |
422 | ||
423 | /* | |
424 | Function: add | |
425 | Add two <BigIntegers>. | |
426 | ||
427 | Parameters: | |
428 | ||
429 | n - The number to add to *this*. Will be converted to a <BigInteger>. | |
430 | ||
431 | Returns: | |
432 | ||
433 | The numbers added together. | |
434 | ||
435 | See Also: | |
436 | ||
437 | <subtract>, <multiply>, <quotient>, <next> | |
438 | */ | |
439 | BigInteger.prototype.add = function(n) { | |
440 | if (this._s === 0) { | |
441 | return BigInteger(n); | |
442 | } | |
443 | ||
444 | n = BigInteger(n); | |
445 | if (n._s === 0) { | |
446 | return this; | |
447 | } | |
448 | if (this._s !== n._s) { | |
449 | n = n.negate(); | |
450 | return this.subtract(n); | |
451 | } | |
452 | ||
453 | var a = this._d; | |
454 | var b = n._d; | |
455 | var al = a.length; | |
456 | var bl = b.length; | |
457 | var sum = new Array(Math.max(al, bl) + 1); | |
458 | var size = Math.min(al, bl); | |
459 | var carry = 0; | |
460 | var digit; | |
461 | ||
462 | for (var i = 0; i < size; i++) { | |
463 | digit = a[i] + b[i] + carry; | |
464 | sum[i] = digit % BigInteger_base; | |
465 | carry = (digit / BigInteger_base) | 0; | |
466 | } | |
467 | if (bl > al) { | |
468 | a = b; | |
469 | al = bl; | |
470 | } | |
471 | for (i = size; carry && i < al; i++) { | |
472 | digit = a[i] + carry; | |
473 | sum[i] = digit % BigInteger_base; | |
474 | carry = (digit / BigInteger_base) | 0; | |
475 | } | |
476 | if (carry) { | |
477 | sum[i] = carry; | |
478 | } | |
479 | ||
480 | for ( ; i < al; i++) { | |
481 | sum[i] = a[i]; | |
482 | } | |
483 | ||
484 | return new BigInteger(sum, this._s, CONSTRUCT); | |
485 | }; | |
486 | ||
487 | /* | |
488 | Function: negate | |
489 | Get the additive inverse of a <BigInteger>. | |
490 | ||
491 | Returns: | |
492 | ||
493 | A <BigInteger> with the same magnatude, but with the opposite sign. | |
494 | ||
495 | See Also: | |
496 | ||
497 | <abs> | |
498 | */ | |
499 | BigInteger.prototype.negate = function() { | |
500 | return new BigInteger(this._d, (-this._s) | 0, CONSTRUCT); | |
501 | }; | |
502 | ||
503 | /* | |
504 | Function: abs | |
505 | Get the absolute value of a <BigInteger>. | |
506 | ||
507 | Returns: | |
508 | ||
509 | A <BigInteger> with the same magnatude, but always positive (or zero). | |
510 | ||
511 | See Also: | |
512 | ||
513 | <negate> | |
514 | */ | |
515 | BigInteger.prototype.abs = function() { | |
516 | return (this._s < 0) ? this.negate() : this; | |
517 | }; | |
518 | ||
519 | /* | |
520 | Function: subtract | |
521 | Subtract two <BigIntegers>. | |
522 | ||
523 | Parameters: | |
524 | ||
525 | n - The number to subtract from *this*. Will be converted to a <BigInteger>. | |
526 | ||
527 | Returns: | |
528 | ||
529 | The *n* subtracted from *this*. | |
530 | ||
531 | See Also: | |
532 | ||
533 | <add>, <multiply>, <quotient>, <prev> | |
534 | */ | |
535 | BigInteger.prototype.subtract = function(n) { | |
536 | if (this._s === 0) { | |
537 | return BigInteger(n).negate(); | |
538 | } | |
539 | ||
540 | n = BigInteger(n); | |
541 | if (n._s === 0) { | |
542 | return this; | |
543 | } | |
544 | if (this._s !== n._s) { | |
545 | n = n.negate(); | |
546 | return this.add(n); | |
547 | } | |
548 | ||
549 | var m = this; | |
550 | // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a| | |
551 | if (this._s < 0) { | |
552 | m = new BigInteger(n._d, 1, CONSTRUCT); | |
553 | n = new BigInteger(this._d, 1, CONSTRUCT); | |
554 | } | |
555 | ||
556 | // Both are positive => a - b | |
557 | var sign = m.compareAbs(n); | |
558 | if (sign === 0) { | |
559 | return ZERO; | |
560 | } | |
561 | else if (sign < 0) { | |
562 | // swap m and n | |
563 | var t = n; | |
564 | n = m; | |
565 | m = t; | |
566 | } | |
567 | ||
568 | // a > b | |
569 | var a = m._d; | |
570 | var b = n._d; | |
571 | var al = a.length; | |
572 | var bl = b.length; | |
573 | var diff = new Array(al); // al >= bl since a > b | |
574 | var borrow = 0; | |
575 | var i; | |
576 | var digit; | |
577 | ||
578 | for (i = 0; i < bl; i++) { | |
579 | digit = a[i] - borrow - b[i]; | |
580 | if (digit < 0) { | |
581 | digit += BigInteger_base; | |
582 | borrow = 1; | |
583 | } | |
584 | else { | |
585 | borrow = 0; | |
586 | } | |
587 | diff[i] = digit; | |
588 | } | |
589 | for (i = bl; i < al; i++) { | |
590 | digit = a[i] - borrow; | |
591 | if (digit < 0) { | |
592 | digit += BigInteger_base; | |
593 | } | |
594 | else { | |
595 | diff[i++] = digit; | |
596 | break; | |
597 | } | |
598 | diff[i] = digit; | |
599 | } | |
600 | for ( ; i < al; i++) { | |
601 | diff[i] = a[i]; | |
602 | } | |
603 | ||
604 | return new BigInteger(diff, sign, CONSTRUCT); | |
605 | }; | |
606 | ||
607 | (function() { | |
608 | function addOne(n, sign) { | |
609 | var a = n._d; | |
610 | var sum = a.slice(); | |
611 | var carry = true; | |
612 | var i = 0; | |
613 | ||
614 | while (true) { | |
615 | var digit = (a[i] || 0) + 1; | |
616 | sum[i] = digit % BigInteger_base; | |
617 | if (digit <= BigInteger_base - 1) { | |
618 | break; | |
619 | } | |
620 | ++i; | |
621 | } | |
622 | ||
623 | return new BigInteger(sum, sign, CONSTRUCT); | |
624 | } | |
625 | ||
626 | function subtractOne(n, sign) { | |
627 | var a = n._d; | |
628 | var sum = a.slice(); | |
629 | var borrow = true; | |
630 | var i = 0; | |
631 | ||
632 | while (true) { | |
633 | var digit = (a[i] || 0) - 1; | |
634 | if (digit < 0) { | |
635 | sum[i] = digit + BigInteger_base; | |
636 | } | |
637 | else { | |
638 | sum[i] = digit; | |
639 | break; | |
640 | } | |
641 | ++i; | |
642 | } | |
643 | ||
644 | return new BigInteger(sum, sign, CONSTRUCT); | |
645 | } | |
646 | ||
647 | /* | |
648 | Function: next | |
649 | Get the next <BigInteger> (add one). | |
650 | ||
651 | Returns: | |
652 | ||
653 | *this* + 1. | |
654 | ||
655 | See Also: | |
656 | ||
657 | <add>, <prev> | |
658 | */ | |
659 | BigInteger.prototype.next = function() { | |
660 | switch (this._s) { | |
661 | case 0: | |
662 | return ONE; | |
663 | case -1: | |
664 | return subtractOne(this, -1); | |
665 | // case 1: | |
666 | default: | |
667 | return addOne(this, 1); | |
668 | } | |
669 | }; | |
670 | ||
671 | /* | |
672 | Function: prev | |
673 | Get the previous <BigInteger> (subtract one). | |
674 | ||
675 | Returns: | |
676 | ||
677 | *this* - 1. | |
678 | ||
679 | See Also: | |
680 | ||
681 | <next>, <subtract> | |
682 | */ | |
683 | BigInteger.prototype.prev = function() { | |
684 | switch (this._s) { | |
685 | case 0: | |
686 | return M_ONE; | |
687 | case -1: | |
688 | return addOne(this, -1); | |
689 | // case 1: | |
690 | default: | |
691 | return subtractOne(this, 1); | |
692 | } | |
693 | }; | |
694 | })(); | |
695 | ||
696 | /* | |
697 | Function: compareAbs | |
698 | Compare the absolute value of two <BigIntegers>. | |
699 | ||
700 | Calling <compareAbs> is faster than calling <abs> twice, then <compare>. | |
701 | ||
702 | Parameters: | |
703 | ||
704 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | |
705 | ||
706 | Returns: | |
707 | ||
708 | -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*. | |
709 | ||
710 | See Also: | |
711 | ||
712 | <compare>, <abs> | |
713 | */ | |
714 | BigInteger.prototype.compareAbs = function(n) { | |
715 | if (this === n) { | |
716 | return 0; | |
717 | } | |
718 | ||
719 | if (!(n instanceof BigInteger)) { | |
720 | if (!isFinite(n)) { | |
721 | return(isNaN(n) ? n : -1); | |
722 | } | |
723 | n = BigInteger(n); | |
724 | } | |
725 | ||
726 | if (this._s === 0) { | |
727 | return (n._s !== 0) ? -1 : 0; | |
728 | } | |
729 | if (n._s === 0) { | |
730 | return 1; | |
731 | } | |
732 | ||
733 | var l = this._d.length; | |
734 | var nl = n._d.length; | |
735 | if (l < nl) { | |
736 | return -1; | |
737 | } | |
738 | else if (l > nl) { | |
739 | return 1; | |
740 | } | |
741 | ||
742 | var a = this._d; | |
743 | var b = n._d; | |
744 | for (var i = l-1; i >= 0; i--) { | |
745 | if (a[i] !== b[i]) { | |
746 | return a[i] < b[i] ? -1 : 1; | |
747 | } | |
748 | } | |
749 | ||
750 | return 0; | |
751 | }; | |
752 | ||
753 | /* | |
754 | Function: compare | |
755 | Compare two <BigIntegers>. | |
756 | ||
757 | Parameters: | |
758 | ||
759 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | |
760 | ||
761 | Returns: | |
762 | ||
763 | -1, 0, or +1 if *this* is less than, equal to, or greater than *n*. | |
764 | ||
765 | See Also: | |
766 | ||
767 | <compareAbs>, <isPositive>, <isNegative>, <isUnit> | |
768 | */ | |
769 | BigInteger.prototype.compare = function(n) { | |
770 | if (this === n) { | |
771 | return 0; | |
772 | } | |
773 | ||
774 | n = BigInteger(n); | |
775 | ||
776 | if (this._s === 0) { | |
777 | return -n._s; | |
778 | } | |
779 | ||
780 | if (this._s === n._s) { // both positive or both negative | |
781 | var cmp = this.compareAbs(n); | |
782 | return cmp * this._s; | |
783 | } | |
784 | else { | |
785 | return this._s; | |
786 | } | |
787 | }; | |
788 | ||
789 | /* | |
790 | Function: isUnit | |
791 | Return true iff *this* is either 1 or -1. | |
792 | ||
793 | Returns: | |
794 | ||
795 | true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>. | |
796 | ||
797 | See Also: | |
798 | ||
799 | <isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>, | |
800 | <BigInteger.ONE>, <BigInteger.M_ONE> | |
801 | */ | |
802 | BigInteger.prototype.isUnit = function() { | |
803 | return this === ONE || | |
804 | this === M_ONE || | |
805 | (this._d.length === 1 && this._d[0] === 1); | |
806 | }; | |
807 | ||
808 | /* | |
809 | Function: multiply | |
810 | Multiply two <BigIntegers>. | |
811 | ||
812 | Parameters: | |
813 | ||
814 | n - The number to multiply *this* by. Will be converted to a | |
815 | <BigInteger>. | |
816 | ||
817 | Returns: | |
818 | ||
819 | The numbers multiplied together. | |
820 | ||
821 | See Also: | |
822 | ||
823 | <add>, <subtract>, <quotient>, <square> | |
824 | */ | |
825 | BigInteger.prototype.multiply = function(n) { | |
826 | // TODO: Consider adding Karatsuba multiplication for large numbers | |
827 | if (this._s === 0) { | |
828 | return ZERO; | |
829 | } | |
830 | ||
831 | n = BigInteger(n); | |
832 | if (n._s === 0) { | |
833 | return ZERO; | |
834 | } | |
835 | if (this.isUnit()) { | |
836 | if (this._s < 0) { | |
837 | return n.negate(); | |
838 | } | |
839 | return n; | |
840 | } | |
841 | if (n.isUnit()) { | |
842 | if (n._s < 0) { | |
843 | return this.negate(); | |
844 | } | |
845 | return this; | |
846 | } | |
847 | if (this === n) { | |
848 | return this.square(); | |
849 | } | |
850 | ||
851 | var r = (this._d.length >= n._d.length); | |
852 | var a = (r ? this : n)._d; // a will be longer than b | |
853 | var b = (r ? n : this)._d; | |
854 | var al = a.length; | |
855 | var bl = b.length; | |
856 | ||
857 | var pl = al + bl; | |
858 | var partial = new Array(pl); | |
859 | var i; | |
860 | for (i = 0; i < pl; i++) { | |
861 | partial[i] = 0; | |
862 | } | |
863 | ||
864 | for (i = 0; i < bl; i++) { | |
865 | var carry = 0; | |
866 | var bi = b[i]; | |
867 | var jlimit = al + i; | |
868 | var digit; | |
869 | for (var j = i; j < jlimit; j++) { | |
870 | digit = partial[j] + bi * a[j - i] + carry; | |
871 | carry = (digit / BigInteger_base) | 0; | |
872 | partial[j] = (digit % BigInteger_base) | 0; | |
873 | } | |
874 | if (carry) { | |
875 | digit = partial[j] + carry; | |
876 | carry = (digit / BigInteger_base) | 0; | |
877 | partial[j] = digit % BigInteger_base; | |
878 | } | |
879 | } | |
880 | return new BigInteger(partial, this._s * n._s, CONSTRUCT); | |
881 | }; | |
882 | ||
883 | // Multiply a BigInteger by a single-digit native number | |
884 | // Assumes that this and n are >= 0 | |
885 | // This is not really intended to be used outside the library itself | |
886 | BigInteger.prototype.multiplySingleDigit = function(n) { | |
887 | if (n === 0 || this._s === 0) { | |
888 | return ZERO; | |
889 | } | |
890 | if (n === 1) { | |
891 | return this; | |
892 | } | |
893 | ||
894 | var digit; | |
895 | if (this._d.length === 1) { | |
896 | digit = this._d[0] * n; | |
897 | if (digit >= BigInteger_base) { | |
898 | return new BigInteger([(digit % BigInteger_base)|0, | |
899 | (digit / BigInteger_base)|0], 1, CONSTRUCT); | |
900 | } | |
901 | return new BigInteger([digit], 1, CONSTRUCT); | |
902 | } | |
903 | ||
904 | if (n === 2) { | |
905 | return this.add(this); | |
906 | } | |
907 | if (this.isUnit()) { | |
908 | return new BigInteger([n], 1, CONSTRUCT); | |
909 | } | |
910 | ||
911 | var a = this._d; | |
912 | var al = a.length; | |
913 | ||
914 | var pl = al + 1; | |
915 | var partial = new Array(pl); | |
916 | for (var i = 0; i < pl; i++) { | |
917 | partial[i] = 0; | |
918 | } | |
919 | ||
920 | var carry = 0; | |
921 | for (var j = 0; j < al; j++) { | |
922 | digit = n * a[j] + carry; | |
923 | carry = (digit / BigInteger_base) | 0; | |
924 | partial[j] = (digit % BigInteger_base) | 0; | |
925 | } | |
926 | if (carry) { | |
927 | partial[j] = carry; | |
928 | } | |
929 | ||
930 | return new BigInteger(partial, 1, CONSTRUCT); | |
931 | }; | |
932 | ||
933 | /* | |
934 | Function: square | |
935 | Multiply a <BigInteger> by itself. | |
936 | ||
937 | This is slightly faster than regular multiplication, since it removes the | |
938 | duplicated multiplcations. | |
939 | ||
940 | Returns: | |
941 | ||
942 | > this.multiply(this) | |
943 | ||
944 | See Also: | |
945 | <multiply> | |
946 | */ | |
947 | BigInteger.prototype.square = function() { | |
948 | // Normally, squaring a 10-digit number would take 100 multiplications. | |
949 | // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated. | |
950 | // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies). | |
951 | // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org | |
952 | ||
953 | if (this._s === 0) { | |
954 | return ZERO; | |
955 | } | |
956 | if (this.isUnit()) { | |
957 | return ONE; | |
958 | } | |
959 | ||
960 | var digits = this._d; | |
961 | var length = digits.length; | |
962 | var imult1 = new Array(length + length + 1); | |
963 | var product, carry, k; | |
964 | var i; | |
965 | ||
966 | // Calculate diagonal | |
967 | for (i = 0; i < length; i++) { | |
968 | k = i * 2; | |
969 | product = digits[i] * digits[i]; | |
970 | carry = (product / BigInteger_base) | 0; | |
971 | imult1[k] = product % BigInteger_base; | |
972 | imult1[k + 1] = carry; | |
973 | } | |
974 | ||
975 | // Calculate repeating part | |
976 | for (i = 0; i < length; i++) { | |
977 | carry = 0; | |
978 | k = i * 2 + 1; | |
979 | for (var j = i + 1; j < length; j++, k++) { | |
980 | product = digits[j] * digits[i] * 2 + imult1[k] + carry; | |
981 | carry = (product / BigInteger_base) | 0; | |
982 | imult1[k] = product % BigInteger_base; | |
983 | } | |
984 | k = length + i; | |
985 | var digit = carry + imult1[k]; | |
986 | carry = (digit / BigInteger_base) | 0; | |
987 | imult1[k] = digit % BigInteger_base; | |
988 | imult1[k + 1] += carry; | |
989 | } | |
990 | ||
991 | return new BigInteger(imult1, 1, CONSTRUCT); | |
992 | }; | |
993 | ||
994 | /* | |
995 | Function: quotient | |
996 | Divide two <BigIntegers> and truncate towards zero. | |
997 | ||
998 | <quotient> throws an exception if *n* is zero. | |
999 | ||
1000 | Parameters: | |
1001 | ||
1002 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | |
1003 | ||
1004 | Returns: | |
1005 | ||
1006 | The *this* / *n*, truncated to an integer. | |
1007 | ||
1008 | See Also: | |
1009 | ||
1010 | <add>, <subtract>, <multiply>, <divRem>, <remainder> | |
1011 | */ | |
1012 | BigInteger.prototype.quotient = function(n) { | |
1013 | return this.divRem(n)[0]; | |
1014 | }; | |
1015 | ||
1016 | /* | |
1017 | Function: divide | |
1018 | Deprecated synonym for <quotient>. | |
1019 | */ | |
1020 | BigInteger.prototype.divide = BigInteger.prototype.quotient; | |
1021 | ||
1022 | /* | |
1023 | Function: remainder | |
1024 | Calculate the remainder of two <BigIntegers>. | |
1025 | ||
1026 | <remainder> throws an exception if *n* is zero. | |
1027 | ||
1028 | Parameters: | |
1029 | ||
1030 | n - The remainder after *this* is divided *this* by *n*. Will be | |
1031 | converted to a <BigInteger>. | |
1032 | ||
1033 | Returns: | |
1034 | ||
1035 | *this* % *n*. | |
1036 | ||
1037 | See Also: | |
1038 | ||
1039 | <divRem>, <quotient> | |
1040 | */ | |
1041 | BigInteger.prototype.remainder = function(n) { | |
1042 | return this.divRem(n)[1]; | |
1043 | }; | |
1044 | ||
1045 | /* | |
1046 | Function: divRem | |
1047 | Calculate the integer quotient and remainder of two <BigIntegers>. | |
1048 | ||
1049 | <divRem> throws an exception if *n* is zero. | |
1050 | ||
1051 | Parameters: | |
1052 | ||
1053 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | |
1054 | ||
1055 | Returns: | |
1056 | ||
1057 | A two-element array containing the quotient and the remainder. | |
1058 | ||
1059 | > a.divRem(b) | |
1060 | ||
1061 | is exactly equivalent to | |
1062 | ||
1063 | > [a.quotient(b), a.remainder(b)] | |
1064 | ||
1065 | except it is faster, because they are calculated at the same time. | |
1066 | ||
1067 | See Also: | |
1068 | ||
1069 | <quotient>, <remainder> | |
1070 | */ | |
1071 | BigInteger.prototype.divRem = function(n) { | |
1072 | n = BigInteger(n); | |
1073 | if (n._s === 0) { | |
1074 | throw new Error("Divide by zero"); | |
1075 | } | |
1076 | if (this._s === 0) { | |
1077 | return [ZERO, ZERO]; | |
1078 | } | |
1079 | if (n._d.length === 1) { | |
1080 | return this.divRemSmall(n._s * n._d[0]); | |
1081 | } | |
1082 | ||
1083 | // Test for easy cases -- |n1| <= |n2| | |
1084 | switch (this.compareAbs(n)) { | |
1085 | case 0: // n1 == n2 | |
1086 | return [this._s === n._s ? ONE : M_ONE, ZERO]; | |
1087 | case -1: // |n1| < |n2| | |
1088 | return [ZERO, this]; | |
1089 | } | |
1090 | ||
1091 | var sign = this._s * n._s; | |
1092 | var a = n.abs(); | |
1093 | var b_digits = this._d; | |
1094 | var b_index = b_digits.length; | |
1095 | var digits = n._d.length; | |
1096 | var quot = []; | |
1097 | var guess; | |
1098 | ||
1099 | var part = new BigInteger([], 0, CONSTRUCT); | |
1100 | ||
1101 | while (b_index) { | |
1102 | part._d.unshift(b_digits[--b_index]); | |
1103 | part = new BigInteger(part._d, 1, CONSTRUCT); | |
1104 | ||
1105 | if (part.compareAbs(n) < 0) { | |
1106 | quot.push(0); | |
1107 | continue; | |
1108 | } | |
1109 | if (part._s === 0) { | |
1110 | guess = 0; | |
1111 | } | |
1112 | else { | |
1113 | var xlen = part._d.length, ylen = a._d.length; | |
1114 | var highx = part._d[xlen-1]*BigInteger_base + part._d[xlen-2]; | |
1115 | var highy = a._d[ylen-1]*BigInteger_base + a._d[ylen-2]; | |
1116 | if (part._d.length > a._d.length) { | |
1117 | // The length of part._d can either match a._d length, | |
1118 | // or exceed it by one. | |
1119 | highx = (highx+1)*BigInteger_base; | |
1120 | } | |
1121 | guess = Math.ceil(highx/highy); | |
1122 | } | |
1123 | do { | |
1124 | var check = a.multiplySingleDigit(guess); | |
1125 | if (check.compareAbs(part) <= 0) { | |
1126 | break; | |
1127 | } | |
1128 | guess--; | |
1129 | } while (guess); | |
1130 | ||
1131 | quot.push(guess); | |
1132 | if (!guess) { | |
1133 | continue; | |
1134 | } | |
1135 | var diff = part.subtract(check); | |
1136 | part._d = diff._d.slice(); | |
1137 | } | |
1138 | ||
1139 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), | |
1140 | new BigInteger(part._d, this._s, CONSTRUCT)]; | |
1141 | }; | |
1142 | ||
1143 | // Throws an exception if n is outside of (-BigInteger.base, -1] or | |
1144 | // [1, BigInteger.base). It's not necessary to call this, since the | |
1145 | // other division functions will call it if they are able to. | |
1146 | BigInteger.prototype.divRemSmall = function(n) { | |
1147 | var r; | |
1148 | n = +n; | |
1149 | if (n === 0) { | |
1150 | throw new Error("Divide by zero"); | |
1151 | } | |
1152 | ||
1153 | var n_s = n < 0 ? -1 : 1; | |
1154 | var sign = this._s * n_s; | |
1155 | n = Math.abs(n); | |
1156 | ||
1157 | if (n < 1 || n >= BigInteger_base) { | |
1158 | throw new Error("Argument out of range"); | |
1159 | } | |
1160 | ||
1161 | if (this._s === 0) { | |
1162 | return [ZERO, ZERO]; | |
1163 | } | |
1164 | ||
1165 | if (n === 1 || n === -1) { | |
1166 | return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign, CONSTRUCT), ZERO]; | |
1167 | } | |
1168 | ||
1169 | // 2 <= n < BigInteger_base | |
1170 | ||
1171 | // divide a single digit by a single digit | |
1172 | if (this._d.length === 1) { | |
1173 | var q = new BigInteger([(this._d[0] / n) | 0], 1, CONSTRUCT); | |
1174 | r = new BigInteger([(this._d[0] % n) | 0], 1, CONSTRUCT); | |
1175 | if (sign < 0) { | |
1176 | q = q.negate(); | |
1177 | } | |
1178 | if (this._s < 0) { | |
1179 | r = r.negate(); | |
1180 | } | |
1181 | return [q, r]; | |
1182 | } | |
1183 | ||
1184 | var digits = this._d.slice(); | |
1185 | var quot = new Array(digits.length); | |
1186 | var part = 0; | |
1187 | var diff = 0; | |
1188 | var i = 0; | |
1189 | var guess; | |
1190 | ||
1191 | while (digits.length) { | |
1192 | part = part * BigInteger_base + digits[digits.length - 1]; | |
1193 | if (part < n) { | |
1194 | quot[i++] = 0; | |
1195 | digits.pop(); | |
1196 | diff = BigInteger_base * diff + part; | |
1197 | continue; | |
1198 | } | |
1199 | if (part === 0) { | |
1200 | guess = 0; | |
1201 | } | |
1202 | else { | |
1203 | guess = (part / n) | 0; | |
1204 | } | |
1205 | ||
1206 | var check = n * guess; | |
1207 | diff = part - check; | |
1208 | quot[i++] = guess; | |
1209 | if (!guess) { | |
1210 | digits.pop(); | |
1211 | continue; | |
1212 | } | |
1213 | ||
1214 | digits.pop(); | |
1215 | part = diff; | |
1216 | } | |
1217 | ||
1218 | r = new BigInteger([diff], 1, CONSTRUCT); | |
1219 | if (this._s < 0) { | |
1220 | r = r.negate(); | |
1221 | } | |
1222 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), r]; | |
1223 | }; | |
1224 | ||
1225 | /* | |
1226 | Function: isEven | |
1227 | Return true iff *this* is divisible by two. | |
1228 | ||
1229 | Note that <BigInteger.ZERO> is even. | |
1230 | ||
1231 | Returns: | |
1232 | ||
1233 | true if *this* is even, false otherwise. | |
1234 | ||
1235 | See Also: | |
1236 | ||
1237 | <isOdd> | |
1238 | */ | |
1239 | BigInteger.prototype.isEven = function() { | |
1240 | var digits = this._d; | |
1241 | return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0; | |
1242 | }; | |
1243 | ||
1244 | /* | |
1245 | Function: isOdd | |
1246 | Return true iff *this* is not divisible by two. | |
1247 | ||
1248 | Returns: | |
1249 | ||
1250 | true if *this* is odd, false otherwise. | |
1251 | ||
1252 | See Also: | |
1253 | ||
1254 | <isEven> | |
1255 | */ | |
1256 | BigInteger.prototype.isOdd = function() { | |
1257 | return !this.isEven(); | |
1258 | }; | |
1259 | ||
1260 | /* | |
1261 | Function: sign | |
1262 | Get the sign of a <BigInteger>. | |
1263 | ||
1264 | Returns: | |
1265 | ||
1266 | * -1 if *this* < 0 | |
1267 | * 0 if *this* == 0 | |
1268 | * +1 if *this* > 0 | |
1269 | ||
1270 | See Also: | |
1271 | ||
1272 | <isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO> | |
1273 | */ | |
1274 | BigInteger.prototype.sign = function() { | |
1275 | return this._s; | |
1276 | }; | |
1277 | ||
1278 | /* | |
1279 | Function: isPositive | |
1280 | Return true iff *this* > 0. | |
1281 | ||
1282 | Returns: | |
1283 | ||
1284 | true if *this*.compare(<BigInteger.ZERO>) == 1. | |
1285 | ||
1286 | See Also: | |
1287 | ||
1288 | <sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO> | |
1289 | */ | |
1290 | BigInteger.prototype.isPositive = function() { | |
1291 | return this._s > 0; | |
1292 | }; | |
1293 | ||
1294 | /* | |
1295 | Function: isNegative | |
1296 | Return true iff *this* < 0. | |
1297 | ||
1298 | Returns: | |
1299 | ||
1300 | true if *this*.compare(<BigInteger.ZERO>) == -1. | |
1301 | ||
1302 | See Also: | |
1303 | ||
1304 | <sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO> | |
1305 | */ | |
1306 | BigInteger.prototype.isNegative = function() { | |
1307 | return this._s < 0; | |
1308 | }; | |
1309 | ||
1310 | /* | |
1311 | Function: isZero | |
1312 | Return true iff *this* == 0. | |
1313 | ||
1314 | Returns: | |
1315 | ||
1316 | true if *this*.compare(<BigInteger.ZERO>) == 0. | |
1317 | ||
1318 | See Also: | |
1319 | ||
1320 | <sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO> | |
1321 | */ | |
1322 | BigInteger.prototype.isZero = function() { | |
1323 | return this._s === 0; | |
1324 | }; | |
1325 | ||
1326 | /* | |
1327 | Function: exp10 | |
1328 | Multiply a <BigInteger> by a power of 10. | |
1329 | ||
1330 | This is equivalent to, but faster than | |
1331 | ||
1332 | > if (n >= 0) { | |
1333 | > return this.multiply(BigInteger("1e" + n)); | |
1334 | > } | |
1335 | > else { // n <= 0 | |
1336 | > return this.quotient(BigInteger("1e" + -n)); | |
1337 | > } | |
1338 | ||
1339 | Parameters: | |
1340 | ||
1341 | n - The power of 10 to multiply *this* by. *n* is converted to a | |
1342 | javascipt number and must be no greater than <BigInteger.MAX_EXP> | |
1343 | (0x7FFFFFFF), or an exception will be thrown. | |
1344 | ||
1345 | Returns: | |
1346 | ||
1347 | *this* * (10 ** *n*), truncated to an integer if necessary. | |
1348 | ||
1349 | See Also: | |
1350 | ||
1351 | <pow>, <multiply> | |
1352 | */ | |
1353 | BigInteger.prototype.exp10 = function(n) { | |
1354 | n = +n; | |
1355 | if (n === 0) { | |
1356 | return this; | |
1357 | } | |
1358 | if (Math.abs(n) > Number(MAX_EXP)) { | |
1359 | throw new Error("exponent too large in BigInteger.exp10"); | |
1360 | } | |
1361 | // Optimization for this == 0. This also keeps us from having to trim zeros in the positive n case | |
1362 | if (this._s === 0) { | |
1363 | return ZERO; | |
1364 | } | |
1365 | if (n > 0) { | |
1366 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | |
1367 | ||
1368 | for (; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | |
1369 | k._d.unshift(0); | |
1370 | } | |
1371 | if (n == 0) | |
1372 | return k; | |
1373 | k._s = 1; | |
1374 | k = k.multiplySingleDigit(Math.pow(10, n)); | |
1375 | return (this._s < 0 ? k.negate() : k); | |
1376 | } else if (-n >= this._d.length*BigInteger_base_log10) { | |
1377 | return ZERO; | |
1378 | } else { | |
1379 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | |
1380 | ||
1381 | for (n = -n; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | |
1382 | k._d.shift(); | |
1383 | } | |
1384 | return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0]; | |
1385 | } | |
1386 | }; | |
1387 | ||
1388 | /* | |
1389 | Function: pow | |
1390 | Raise a <BigInteger> to a power. | |
1391 | ||
1392 | In this implementation, 0**0 is 1. | |
1393 | ||
1394 | Parameters: | |
1395 | ||
1396 | n - The exponent to raise *this* by. *n* must be no greater than | |
1397 | <BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown. | |
1398 | ||
1399 | Returns: | |
1400 | ||
1401 | *this* raised to the *nth* power. | |
1402 | ||
1403 | See Also: | |
1404 | ||
1405 | <modPow> | |
1406 | */ | |
1407 | BigInteger.prototype.pow = function(n) { | |
1408 | if (this.isUnit()) { | |
1409 | if (this._s > 0) { | |
1410 | return this; | |
1411 | } | |
1412 | else { | |
1413 | return BigInteger(n).isOdd() ? this : this.negate(); | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | n = BigInteger(n); | |
1418 | if (n._s === 0) { | |
1419 | return ONE; | |
1420 | } | |
1421 | else if (n._s < 0) { | |
1422 | if (this._s === 0) { | |
1423 | throw new Error("Divide by zero"); | |
1424 | } | |
1425 | else { | |
1426 | return ZERO; | |
1427 | } | |
1428 | } | |
1429 | if (this._s === 0) { | |
1430 | return ZERO; | |
1431 | } | |
1432 | if (n.isUnit()) { | |
1433 | return this; | |
1434 | } | |
1435 | ||
1436 | if (n.compareAbs(MAX_EXP) > 0) { | |
1437 | throw new Error("exponent too large in BigInteger.pow"); | |
1438 | } | |
1439 | var x = this; | |
1440 | var aux = ONE; | |
1441 | var two = BigInteger.small[2]; | |
1442 | ||
1443 | while (n.isPositive()) { | |
1444 | if (n.isOdd()) { | |
1445 | aux = aux.multiply(x); | |
1446 | if (n.isUnit()) { | |
1447 | return aux; | |
1448 | } | |
1449 | } | |
1450 | x = x.square(); | |
1451 | n = n.quotient(two); | |
1452 | } | |
1453 | ||
1454 | return aux; | |
1455 | }; | |
1456 | ||
1457 | /* | |
1458 | Function: modPow | |
1459 | Raise a <BigInteger> to a power (mod m). | |
1460 | ||
1461 | Because it is reduced by a modulus, <modPow> is not limited by | |
1462 | <BigInteger.MAX_EXP> like <pow>. | |
1463 | ||
1464 | Parameters: | |
1465 | ||
1466 | exponent - The exponent to raise *this* by. Must be positive. | |
1467 | modulus - The modulus. | |
1468 | ||
1469 | Returns: | |
1470 | ||
1471 | *this* ^ *exponent* (mod *modulus*). | |
1472 | ||
1473 | See Also: | |
1474 | ||
1475 | <pow>, <mod> | |
1476 | */ | |
1477 | BigInteger.prototype.modPow = function(exponent, modulus) { | |
1478 | var result = ONE; | |
1479 | var base = this; | |
1480 | ||
1481 | while (exponent.isPositive()) { | |
1482 | if (exponent.isOdd()) { | |
1483 | result = result.multiply(base).remainder(modulus); | |
1484 | } | |
1485 | ||
1486 | exponent = exponent.quotient(BigInteger.small[2]); | |
1487 | if (exponent.isPositive()) { | |
1488 | base = base.square().remainder(modulus); | |
1489 | } | |
1490 | } | |
1491 | ||
1492 | return result; | |
1493 | }; | |
1494 | ||
1495 | /* | |
1496 | Function: log | |
1497 | Get the natural logarithm of a <BigInteger> as a native JavaScript number. | |
1498 | ||
1499 | This is equivalent to | |
1500 | ||
1501 | > Math.log(this.toJSValue()) | |
1502 | ||
1503 | but handles values outside of the native number range. | |
1504 | ||
1505 | Returns: | |
1506 | ||
1507 | log( *this* ) | |
1508 | ||
1509 | See Also: | |
1510 | ||
1511 | <toJSValue> | |
1512 | */ | |
1513 | BigInteger.prototype.log = function() { | |
1514 | switch (this._s) { | |
1515 | case 0: return -Infinity; | |
1516 | case -1: return NaN; | |
1517 | default: // Fall through. | |
1518 | } | |
1519 | ||
1520 | var l = this._d.length; | |
1521 | ||
1522 | if (l*BigInteger_base_log10 < 30) { | |
1523 | return Math.log(this.valueOf()); | |
1524 | } | |
1525 | ||
1526 | var N = Math.ceil(30/BigInteger_base_log10); | |
1527 | var firstNdigits = this._d.slice(l - N); | |
1528 | return Math.log((new BigInteger(firstNdigits, 1, CONSTRUCT)).valueOf()) + (l - N) * Math.log(BigInteger_base); | |
1529 | }; | |
1530 | ||
1531 | /* | |
1532 | Function: valueOf | |
1533 | Convert a <BigInteger> to a native JavaScript integer. | |
1534 | ||
1535 | This is called automatically by JavaScipt to convert a <BigInteger> to a | |
1536 | native value. | |
1537 | ||
1538 | Returns: | |
1539 | ||
1540 | > parseInt(this.toString(), 10) | |
1541 | ||
1542 | See Also: | |
1543 | ||
1544 | <toString>, <toJSValue> | |
1545 | */ | |
1546 | BigInteger.prototype.valueOf = function() { | |
1547 | return parseInt(this.toString(), 10); | |
1548 | }; | |
1549 | ||
1550 | /* | |
1551 | Function: toJSValue | |
1552 | Convert a <BigInteger> to a native JavaScript integer. | |
1553 | ||
1554 | This is the same as valueOf, but more explicitly named. | |
1555 | ||
1556 | Returns: | |
1557 | ||
1558 | > parseInt(this.toString(), 10) | |
1559 | ||
1560 | See Also: | |
1561 | ||
1562 | <toString>, <valueOf> | |
1563 | */ | |
1564 | BigInteger.prototype.toJSValue = function() { | |
1565 | return parseInt(this.toString(), 10); | |
1566 | }; | |
1567 | ||
1568 | var MAX_EXP = BigInteger(0x7FFFFFFF); | |
1569 | // Constant: MAX_EXP | |
1570 | // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647). | |
1571 | BigInteger.MAX_EXP = MAX_EXP; | |
1572 | ||
1573 | (function() { | |
1574 | function makeUnary(fn) { | |
1575 | return function(a) { | |
1576 | return fn.call(BigInteger(a)); | |
1577 | }; | |
1578 | } | |
1579 | ||
1580 | function makeBinary(fn) { | |
1581 | return function(a, b) { | |
1582 | return fn.call(BigInteger(a), BigInteger(b)); | |
1583 | }; | |
1584 | } | |
1585 | ||
1586 | function makeTrinary(fn) { | |
1587 | return function(a, b, c) { | |
1588 | return fn.call(BigInteger(a), BigInteger(b), BigInteger(c)); | |
1589 | }; | |
1590 | } | |
1591 | ||
1592 | (function() { | |
1593 | var i, fn; | |
1594 | var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(","); | |
1595 | var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(","); | |
1596 | var trinary = ["modPow"]; | |
1597 | ||
1598 | for (i = 0; i < unary.length; i++) { | |
1599 | fn = unary[i]; | |
1600 | BigInteger[fn] = makeUnary(BigInteger.prototype[fn]); | |
1601 | } | |
1602 | ||
1603 | for (i = 0; i < binary.length; i++) { | |
1604 | fn = binary[i]; | |
1605 | BigInteger[fn] = makeBinary(BigInteger.prototype[fn]); | |
1606 | } | |
1607 | ||
1608 | for (i = 0; i < trinary.length; i++) { | |
1609 | fn = trinary[i]; | |
1610 | BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]); | |
1611 | } | |
1612 | ||
1613 | BigInteger.exp10 = function(x, n) { | |
1614 | return BigInteger(x).exp10(n); | |
1615 | }; | |
1616 | })(); | |
1617 | })(); | |
1618 | ||
1619 | exports.BigInteger = BigInteger; | |
1620 | })(typeof exports !== 'undefined' ? exports : this); |