1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* Detects entropy from a string.
*
* Formats include:
* binary [0-1]
* base 6 [0-5]
* dice 6 [1-6]
* decimal [0-9]
* hexadecimal [0-9A-F]
* card [A2-9TJQK][CDHS]
*
* Automatically uses lowest entropy to avoid issues such as interpretting 0101
* as hexadecimal which would be 16 bits when really it's only 4 bits of binary
* entropy.
*/
window.Entropy = new (function() {
var TWO = new BigInteger(2);
// matchers returns an array of the matched events for each type of entropy.
// eg
// matchers.binary("010") returns ["0", "1", "0"]
// matchers.binary("a10") returns ["1", "0"]
// matchers.hex("a10") returns ["a", "1", "0"]
var matchers = {
binary: function(str) {
return str.match(/[0-1]/gi) || [];
},
base6: function(str) {
return str.match(/[0-5]/gi) || [];
},
dice: function(str) {
return str.match(/[1-6]/gi) || []; // ie dice numbers
},
base10: function(str) {
return str.match(/[0-9]/gi) || [];
},
hex: function(str) {
return str.match(/[0-9A-F]/gi) || [];
},
card: function(str) {
// Format is NumberSuit, eg
// AH ace of hearts
// 8C eight of clubs
// TD ten of diamonds
// JS jack of spades
// QH queen of hearts
// KC king of clubs
return str.match(/([A2-9TJQK][CDHS])/gi) || [];
}
}
// Convert array of cards from ["ac", "4d", "ks"]
// to numbers between 0 and 51 [0, 16, 51]
function convertCardsToInts(cards) {
var ints = [];
var values = "a23456789tjqk";
var suits = "cdhs";
for (var i=0; i<cards.length; i++) {
var card = cards[i].toLowerCase();
var value = card[0];
var suit = card[1];
var asInt = 13 * suits.indexOf(suit) + values.indexOf(value);
ints.push(asInt);
}
return ints;
}
this.fromString = function(rawEntropyStr, baseStr) {
// Find type of entropy being used (binary, hex, dice etc)
var base = getBase(rawEntropyStr, baseStr);
// Convert dice to base6 entropy (ie 1-6 to 0-5)
// This is done by changing all 6s to 0s
if (base.str == "dice") {
var newParts = [];
var newInts = [];
for (var i=0; i<base.parts.length; i++) {
var c = base.parts[i];
if ("12345".indexOf(c) > -1) {
newParts[i] = base.parts[i];
newInts[i] = base.ints[i];
}
else {
newParts[i] = "0";
newInts[i] = 0;
}
}
base.str = "base 6 (dice)";
base.ints = newInts;
base.parts = newParts;
base.matcher = matchers.base6;
}
// Detect empty entropy
if (base.parts.length == 0) {
return {
binaryStr: "",
cleanStr: "",
cleanHtml: "",
base: base,
};
}
// Convert base.ints to BigInteger.
// Due to using unusual bases, eg cards of base52, this is not as simple as
// using BigInteger.parse()
var entropyInt = BigInteger.ZERO;
for (var i=base.ints.length-1; i>=0; i--) {
var thisInt = BigInteger.parse(base.ints[i]);
var power = (base.ints.length - 1) - i;
var additionalEntropy = BigInteger.parse(base.asInt).pow(power).multiply(thisInt);
entropyInt = entropyInt.add(additionalEntropy);
}
// Convert entropy to binary
var entropyBin = entropyInt.toString(2);
// If the first integer is small, it must be padded with zeros.
// Otherwise the chance of the first bit being 1 is 100%, which is
// obviously incorrect.
// This is not perfect for non-2^n bases.
var expectedBits = Math.floor(base.parts.length * Math.log2(base.asInt));
while (entropyBin.length < expectedBits) {
entropyBin = "0" + entropyBin;
}
// Calculate the number of bits per event
var bitsPerEvent = Math.log2(base.asInt);
// Cards binary must be handled differently, since they're not replaced
if (base.asInt == 52) {
var cardEntropy = processCardEntropy(base.parts);
entropyBin = cardEntropy.binaryStr;
bitsPerEvent = cardEntropy.bitsPerEvent;
}
// Supply a 'filtered' entropy string for display purposes
var entropyClean = base.parts.join("");
var entropyHtml = base.parts.join("");
if (base.asInt == 52) {
entropyClean = base.parts.join(" ").toUpperCase();
entropyClean = entropyClean.replace(/C/g, "\u2663");
entropyClean = entropyClean.replace(/D/g, "\u2666");
entropyClean = entropyClean.replace(/H/g, "\u2665");
entropyClean = entropyClean.replace(/S/g, "\u2660");
entropyHtml = base.parts.join(" ").toUpperCase();
entropyHtml = entropyHtml.replace(/C/g, "<span class='card-suit club'>\u2663</span>");
entropyHtml = entropyHtml.replace(/D/g, "<span class='card-suit diamond'>\u2666</span>");
entropyHtml = entropyHtml.replace(/H/g, "<span class='card-suit heart'>\u2665</span>");
entropyHtml = entropyHtml.replace(/S/g, "<span class='card-suit spade'>\u2660</span>");
}
// Return the result
var e = {
binaryStr: entropyBin,
cleanStr: entropyClean,
cleanHtml: entropyHtml,
bitsPerEvent: bitsPerEvent,
base: base,
}
return e;
}
function getSortedDeck() {
var s = [];
var suits = "CDHS";
var values = "A23456789TJQK";
for (var i=0; i<suits.length; i++) {
for (var j=0; j<values.length; j++) {
s.push(values[j]+suits[i]);
}
}
return s;
}
function getBase(str, baseStr) {
// Need to get the lowest base for the supplied entropy.
// This prevents interpreting, say, dice rolls as hexadecimal.
var binaryMatches = matchers.binary(str);
var hexMatches = matchers.hex(str);
var autodetect = baseStr === undefined;
// Find the lowest base that can be used, whilst ignoring any irrelevant chars
if ((binaryMatches.length == hexMatches.length && hexMatches.length > 0 && autodetect) || baseStr === "binary") {
var ints = binaryMatches.map(function(i) { return parseInt(i, 2) });
return {
ints: ints,
parts: binaryMatches,
matcher: matchers.binary,
asInt: 2,
str: "binary",
}
}
var cardMatches = matchers.card(str);
if ((cardMatches.length >= hexMatches.length / 2 && autodetect) || baseStr === "card") {
var ints = convertCardsToInts(cardMatches);
return {
ints: ints,
parts: cardMatches,
matcher: matchers.card,
asInt: 52,
str: "card",
}
}
var diceMatches = matchers.dice(str);
if ((diceMatches.length == hexMatches.length && hexMatches.length > 0 && autodetect) || baseStr === "dice") {
var ints = diceMatches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: diceMatches,
matcher: matchers.dice,
asInt: 6,
str: "dice",
}
}
var base6Matches = matchers.base6(str);
if ((base6Matches.length == hexMatches.length && hexMatches.length > 0 && autodetect) || baseStr === "base 6") {
var ints = base6Matches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: base6Matches,
matcher: matchers.base6,
asInt: 6,
str: "base 6",
}
}
var base10Matches = matchers.base10(str);
if ((base10Matches.length == hexMatches.length && hexMatches.length > 0 && autodetect) || baseStr === "base 10") {
var ints = base10Matches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: base10Matches,
matcher: matchers.base10,
asInt: 10,
str: "base 10",
}
}
var ints = hexMatches.map(function(i) { return parseInt(i, 16) });
return {
ints: ints,
parts: hexMatches,
matcher: matchers.hex,
asInt: 16,
str: "hexadecimal",
}
}
// Assume cards are NOT replaced.
// Additional entropy decreases as more cards are used. This means
// total possible entropy is measured using n!, not base^n.
// eg the second last card can be only one of two, not one of fifty two
// so the added entropy for that card is only one bit at most
function processCardEntropy(cards) {
// Track how many instances of each card have been used, and thus
// how many decks are in use.
var cardCounts = {};
var numberOfDecks = 0;
// Work out number of decks by max(duplicates)
for (var i=0; i<cards.length; i++) {
// Get the card that was drawn
var cardLower = cards[i];
var card = cardLower.toUpperCase();
// Initialize the count for this card if needed
if (!(card in cardCounts)) {
cardCounts[card] = 0;
}
cardCounts[card] += 1;
// See if this is max(duplicates)
if (cardCounts[card] > numberOfDecks) {
numberOfDecks = cardCounts[card];
}
}
// Work out the total number of bits for this many decks
// See http://crypto.stackexchange.com/q/41886
var gainedBits = 0;
// Equivalent of Math.log2(factorial(52*numberOfDecks))
// which becomes infinity for numberOfDecks > 4
for (var i=1; i<=52*numberOfDecks; i++) {
gainedBits = gainedBits + Math.log2(i);
}
var lostBits = 52 * Math.log2(factorial(numberOfDecks));
var maxBits = gainedBits - lostBits;
// Convert the drawn cards to a binary representation.
// The exact technique for doing this is unclear.
// See
// http://crypto.stackexchange.com/a/41896
// "I even doubt that this is well defined (only the average entropy
// is, I believe)."
// See
// https://github.com/iancoleman/bip39/issues/33#issuecomment-263021856
// "The binary representation can be the first log(permutations,2) bits
// of the sha-2 hash of the normalized deck string."
//
// In this specific implementation, the first N bits of the hash of the
// normalized cards string is being used. Uppercase, no spaces; eg
// sha256("AH8DQSTC2H")
var totalCards = numberOfDecks * 52;
var percentUsed = cards.length / totalCards;
// Calculate the average number of bits of entropy for the number of
// cards drawn.
var numberOfBits = Math.floor(maxBits * percentUsed);
// Create a normalized string of the selected cards
var normalizedCards = cards.join("").toUpperCase();
// Convert to binary using the SHA256 hash of the normalized cards.
// If the number of bits is more than 256, multiple hashes
// are used until the required number of bits is reached.
var entropyBin = "";
var iterations = 0;
while (entropyBin.length < numberOfBits) {
var hashedCards = sjcl.hash.sha256.hash(normalizedCards + ":" + iterations);
var hashHex = sjcl.codec.hex.fromBits(hashedCards);
for (var i=0; i<hashHex.length; i++) {
var decimal = parseInt(hashHex[i], 16);
var binary = decimal.toString(2);
while (binary.length < 4) {
binary = "0" + binary;
}
entropyBin = entropyBin + binary;
}
iterations = iterations + 1;
}
// Truncate to the appropriate number of bits.
entropyBin = entropyBin.substring(0, numberOfBits);
// Get the number of bits per event
bitsPerEvent = maxBits / totalCards;
return {
binaryStr: entropyBin,
bitsPerEvent: bitsPerEvent,
}
}
// Polyfill for Math.log2
// See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/log2#Polyfill
Math.log2 = Math.log2 || function(x) {
// The polyfill isn't good enough because of the poor accuracy of
// Math.LOG2E
// log2(8) gave 2.9999999999999996 which when floored causes issues.
// So instead use the BigInteger library to get it right.
return BigInteger.log(x) / BigInteger.log(2);
};
// Depends on BigInteger
function factorial(n) {
if (n == 0) {
return 1;
}
f = BigInteger.ONE;
for (var i=1; i<=n; i++) {
f = f.multiply(new BigInteger(i));
}
return f;
}
})();
|