1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
|
{-# LANGUAGE RankNTypes, TypeFamilies, BangPatterns, Trustworthy #-}
{-| This module provides @pipes@ utilities for \"text streams\", which are
streams of 'Text' chunks. The individual chunks are uniformly @strict@, but
a 'Producer' can be converted to and from lazy 'Text's, though this is generally
unwise. Where pipes IO replaces lazy IO, 'Producer Text m r' replaces lazy 'Text'.
An 'IO.Handle' can be associated with a 'Producer' or 'Consumer' according as it is read or written to.
To stream to or from 'IO.Handle's, one can use 'fromHandle' or 'toHandle'. For
example, the following program copies a document from one file to another:
> import Pipes
> import qualified Data.Text.Pipes as Text
> import System.IO
>
> main =
> withFile "inFile.txt" ReadMode $ \hIn ->
> withFile "outFile.txt" WriteMode $ \hOut ->
> runEffect $ Text.fromHandle hIn >-> Text.toHandle hOut
To stream from files, the following is perhaps more Prelude-like (note that it uses Pipes.Safe):
> import Pipes
> import qualified Data.Text.Pipes as Text
> import Pipes.Safe
>
> main = runSafeT $ runEffect $ Text.readFile "inFile.txt" >-> Text.writeFile "outFile.txt"
You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin'
and 'stdout' pipes, as with the following \"echo\" program:
> main = runEffect $ Text.stdin >-> Text.stdout
You can also translate pure lazy 'TL.Text's to and from pipes:
> main = runEffect $ Text.fromLazy (TL.pack "Hello, world!\n") >-> Text.stdout
In addition, this module provides many functions equivalent to lazy
'Text' functions so that you can transform or fold text streams. For
example, to stream only the first three lines of 'stdin' to 'stdout' you
might write:
> import Pipes
> import qualified Pipes.Text as Text
> import qualified Pipes.Parse as Parse
>
> main = runEffect $ takeLines 3 Text.stdin >-> Text.stdout
> where
> takeLines n = Text.unlines . Parse.takeFree n . Text.lines
The above program will never bring more than one chunk of text (~ 32 KB) into
memory, no matter how long the lines are.
Note that functions in this library are designed to operate on streams that
are insensitive to text boundaries. This means that they may freely split
text into smaller texts, /discard empty texts/. However, apart from the
special case of 'concatMap', they will /never concatenate texts/ in order
to provide strict upper bounds on memory usage -- with the single exception of 'concatMap'.
-}
module Pipes.Text (
-- * Producers
fromLazy
, stdin
, fromHandle
, readFile
-- * Consumers
, stdout
, toHandle
, writeFile
-- * Pipes
, map
, concatMap
, take
, drop
, takeWhile
, dropWhile
, filter
, scan
, encodeUtf8
, pack
, unpack
, toCaseFold
, toLower
, toUpper
, stripStart
-- * Folds
, toLazy
, toLazyM
, foldChars
, head
, last
, null
, length
, any
, all
, maximum
, minimum
, find
, index
, count
-- * Primitive Character Parsers
-- $parse
, nextChar
, drawChar
, unDrawChar
, peekChar
, isEndOfChars
-- * Parsing Lenses
, splitAt
, span
, break
, groupBy
, group
, word
, line
-- * Decoding Lenses
, decodeUtf8
, codec
-- * Codecs
, utf8
, utf16_le
, utf16_be
, utf32_le
, utf32_be
-- * Other Decoding/Encoding Functions
, decodeIso8859_1
, decodeAscii
, encodeIso8859_1
, encodeAscii
-- * FreeT Splitters
, chunksOf
, splitsWith
, splits
-- , groupsBy
-- , groups
, lines
, words
-- * Transformations
, intersperse
, packChars
-- * Joiners
, intercalate
, unlines
, unwords
-- * Re-exports
-- $reexports
, Decoding(..)
, streamDecodeUtf8
, decodeSomeUtf8
, Codec(..)
, TextException(..)
, module Data.ByteString
, module Data.Text
, module Data.Profunctor
, module Data.Word
, module Pipes.Parse
, module Pipes.Group
) where
import Control.Exception (throwIO, try)
import Control.Applicative ((<*))
import Control.Monad (liftM, unless, join)
import Control.Monad.Trans.State.Strict (StateT(..), modify)
import Data.Monoid ((<>))
import qualified Data.Text as T
import qualified Data.Text.IO as T
import qualified Data.Text.Encoding as TE
import qualified Data.Text.Encoding.Error as TE
import Data.Text (Text)
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Text.Lazy.Internal (foldrChunks, defaultChunkSize)
import Data.ByteString.Unsafe (unsafeTake, unsafeDrop)
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as B8
import Data.Char (ord, isSpace)
import Data.Functor.Constant (Constant(Constant, getConstant))
import Data.Functor.Identity (Identity)
import Data.Profunctor (Profunctor)
import qualified Data.Profunctor
import qualified Data.List as List
import Foreign.C.Error (Errno(Errno), ePIPE)
import qualified GHC.IO.Exception as G
import Pipes
import qualified Pipes.ByteString as PB
import qualified Pipes.Text.Internal as PI
import Pipes.Text.Internal
import Pipes.Core (respond, Server')
import Pipes.Group (concats, intercalates, FreeT(..), FreeF(..))
import qualified Pipes.Group as PG
import qualified Pipes.Parse as PP
import Pipes.Parse (Parser)
import qualified Pipes.Safe.Prelude as Safe
import qualified Pipes.Safe as Safe
import Pipes.Safe (MonadSafe(..), Base(..))
import qualified Pipes.Prelude as P
import qualified System.IO as IO
import Data.Char (isSpace)
import Data.Word (Word8)
import Prelude hiding (
all,
any,
break,
concat,
concatMap,
drop,
dropWhile,
elem,
filter,
head,
last,
lines,
length,
map,
maximum,
minimum,
notElem,
null,
readFile,
span,
splitAt,
take,
takeWhile,
unlines,
unwords,
words,
writeFile )
-- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's
fromLazy :: (Monad m) => TL.Text -> Producer' Text m ()
fromLazy = foldrChunks (\e a -> yield e >> a) (return ())
{-# INLINE fromLazy #-}
-- | Stream text from 'stdin'
stdin :: MonadIO m => Producer Text m ()
stdin = fromHandle IO.stdin
{-# INLINE stdin #-}
{-| Convert a 'IO.Handle' into a text stream using a text size
determined by the good sense of the text library; note that this
is distinctly slower than @decideUtf8 (Pipes.ByteString.fromHandle h)@
but uses the system encoding and has other `Data.Text.IO` features
-}
fromHandle :: MonadIO m => IO.Handle -> Producer Text m ()
fromHandle h = go where
go = do txt <- liftIO (T.hGetChunk h)
unless (T.null txt) ( do yield txt
go )
{-# INLINABLE fromHandle#-}
{-| Stream text from a file in the simple fashion of @Data.Text.IO@
>>> runSafeT $ runEffect $ Text.readFile "hello.hs" >-> Text.map toUpper >-> hoist lift Text.stdout
MAIN = PUTSTRLN "HELLO WORLD"
-}
readFile :: MonadSafe m => FilePath -> Producer Text m ()
readFile file = Safe.withFile file IO.ReadMode fromHandle
{-# INLINE readFile #-}
{-| Stream text to 'stdout'
Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe.
Note: For best performance, it might be best just to use @(for source (liftIO . putStr))@
instead of @(source >-> stdout)@ .
-}
stdout :: MonadIO m => Consumer' Text m ()
stdout = go
where
go = do
txt <- await
x <- liftIO $ try (T.putStr txt)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdout #-}
{-| Convert a text stream into a 'Handle'
Note: again, for best performance, where possible use
@(for source (liftIO . hPutStr handle))@ instead of @(source >-> toHandle handle)@.
-}
toHandle :: MonadIO m => IO.Handle -> Consumer' Text m r
toHandle h = for cat (liftIO . T.hPutStr h)
{-# INLINABLE toHandle #-}
{-# RULES "p >-> toHandle h" forall p h .
p >-> toHandle h = for p (\txt -> liftIO (T.hPutStr h txt))
#-}
-- | Stream text into a file. Uses @pipes-safe@.
writeFile :: (MonadSafe m) => FilePath -> Consumer' Text m ()
writeFile file = Safe.withFile file IO.WriteMode toHandle
{-# INLINE writeFile #-}
type Lens' a b = forall f . Functor f => (b -> f b) -> (a -> f a)
type Iso' a b = forall f p . (Functor f, Profunctor p) => p b (f b) -> p a (f a)
(^.) :: a -> ((b -> Constant b b) -> (a -> Constant b a)) -> b
a ^. lens = getConstant (lens Constant a)
-- | Apply a transformation to each 'Char' in the stream
map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r
map f = P.map (T.map f)
{-# INLINABLE map #-}
{-# RULES "p >-> map f" forall p f .
p >-> map f = for p (\txt -> yield (T.map f txt))
#-}
-- | Map a function over the characters of a text stream and concatenate the results
concatMap
:: (Monad m) => (Char -> Text) -> Pipe Text Text m r
concatMap f = P.map (T.concatMap f)
{-# INLINABLE concatMap #-}
{-# RULES "p >-> concatMap f" forall p f .
p >-> concatMap f = for p (\txt -> yield (T.concatMap f txt))
#-}
-- | Transform a Pipe of 'Text' into a Pipe of 'ByteString's using UTF-8
-- encoding; @encodeUtf8 = Pipes.Prelude.map TE.encodeUtf8@ so more complex
-- encoding pipes can easily be constructed with the functions in @Data.Text.Encoding@
encodeUtf8 :: Monad m => Pipe Text ByteString m r
encodeUtf8 = P.map TE.encodeUtf8
{-# INLINEABLE encodeUtf8 #-}
{-# RULES "p >-> encodeUtf8" forall p .
p >-> encodeUtf8 = for p (\txt -> yield (TE.encodeUtf8 txt))
#-}
-- | Transform a Pipe of 'String's into one of 'Text' chunks
pack :: Monad m => Pipe String Text m r
pack = P.map T.pack
{-# INLINEABLE pack #-}
{-# RULES "p >-> pack" forall p .
p >-> pack = for p (\txt -> yield (T.pack txt))
#-}
-- | Transform a Pipes of 'Text' chunks into one of 'String's
unpack :: Monad m => Pipe Text String m r
unpack = for cat (\t -> yield (T.unpack t))
{-# INLINEABLE unpack #-}
{-# RULES "p >-> unpack" forall p .
p >-> unpack = for p (\txt -> yield (T.unpack txt))
#-}
-- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utilities,
-- here acting as 'Text' pipes, rather as they would on a lazy text
toCaseFold :: Monad m => Pipe Text Text m ()
toCaseFold = P.map T.toCaseFold
{-# INLINEABLE toCaseFold #-}
{-# RULES "p >-> toCaseFold" forall p .
p >-> toCaseFold = for p (\txt -> yield (T.toCaseFold txt))
#-}
-- | lowercase incoming 'Text'
toLower :: Monad m => Pipe Text Text m ()
toLower = P.map T.toLower
{-# INLINEABLE toLower #-}
{-# RULES "p >-> toLower" forall p .
p >-> toLower = for p (\txt -> yield (T.toLower txt))
#-}
-- | uppercase incoming 'Text'
toUpper :: Monad m => Pipe Text Text m ()
toUpper = P.map T.toUpper
{-# INLINEABLE toUpper #-}
{-# RULES "p >-> toUpper" forall p .
p >-> toUpper = for p (\txt -> yield (T.toUpper txt))
#-}
-- | Remove leading white space from an incoming succession of 'Text's
stripStart :: Monad m => Pipe Text Text m r
stripStart = do
chunk <- await
let text = T.stripStart chunk
if T.null text
then stripStart
else do yield text
cat
{-# INLINEABLE stripStart #-}
-- | @(take n)@ only allows @n@ individual characters to pass;
-- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass.
take :: (Monad m, Integral a) => a -> Pipe Text Text m ()
take n0 = go n0 where
go n
| n <= 0 = return ()
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len > n)
then yield (T.take (fromIntegral n) txt)
else do
yield txt
go (n - len)
{-# INLINABLE take #-}
-- | @(drop n)@ drops the first @n@ characters
drop :: (Monad m, Integral a) => a -> Pipe Text Text m r
drop n0 = go n0 where
go n
| n <= 0 = cat
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len >= n)
then do
yield (T.drop (fromIntegral n) txt)
cat
else go (n - len)
{-# INLINABLE drop #-}
-- | Take characters until they fail the predicate
takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m ()
takeWhile predicate = go
where
go = do
txt <- await
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go
else yield prefix
{-# INLINABLE takeWhile #-}
-- | Drop characters until they fail the predicate
dropWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
dropWhile predicate = go where
go = do
txt <- await
case T.findIndex (not . predicate) txt of
Nothing -> go
Just i -> do
yield (T.drop i txt)
cat
{-# INLINABLE dropWhile #-}
-- | Only allows 'Char's to pass if they satisfy the predicate
filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
filter predicate = P.map (T.filter predicate)
{-# INLINABLE filter #-}
{-# RULES "p >-> filter q" forall p q .
p >-> filter q = for p (\txt -> yield (T.filter q txt))
#-}
-- | Strict left scan over the characters
scan
:: (Monad m)
=> (Char -> Char -> Char) -> Char -> Pipe Text Text m r
scan step begin = do
yield (T.singleton begin)
go begin
where
go c = do
txt <- await
let txt' = T.scanl step c txt
c' = T.last txt'
yield (T.tail txt')
go c'
{-# INLINABLE scan #-}
{-| Fold a pure 'Producer' of strict 'Text's into a lazy
'TL.Text'
-}
toLazy :: Producer Text Identity () -> TL.Text
toLazy = TL.fromChunks . P.toList
{-# INLINABLE toLazy #-}
{-| Fold an effectful 'Producer' of strict 'Text's into a lazy
'TL.Text'
Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for
simple testing purposes. Idiomatic @pipes@ style consumes the chunks
immediately as they are generated instead of loading them all into memory.
-}
toLazyM :: (Monad m) => Producer Text m () -> m TL.Text
toLazyM = liftM TL.fromChunks . P.toListM
{-# INLINABLE toLazyM #-}
-- | Reduce the text stream using a strict left fold over characters
foldChars
:: Monad m
=> (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r
foldChars step begin done = P.fold (T.foldl' step) begin done
{-# INLINABLE foldChars #-}
-- | Retrieve the first 'Char'
head :: (Monad m) => Producer Text m () -> m (Maybe Char)
head = go
where
go p = do
x <- nextChar p
case x of
Left _ -> return Nothing
Right (c, _) -> return (Just c)
{-# INLINABLE head #-}
-- | Retrieve the last 'Char'
last :: (Monad m) => Producer Text m () -> m (Maybe Char)
last = go Nothing
where
go r p = do
x <- next p
case x of
Left () -> return r
Right (txt, p') ->
if (T.null txt)
then go r p'
else go (Just $ T.last txt) p'
{-# INLINABLE last #-}
-- | Determine if the stream is empty
null :: (Monad m) => Producer Text m () -> m Bool
null = P.all T.null
{-# INLINABLE null #-}
-- | Count the number of characters in the stream
length :: (Monad m, Num n) => Producer Text m () -> m n
length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id
{-# INLINABLE length #-}
-- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate
any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
any predicate = P.any (T.any predicate)
{-# INLINABLE any #-}
-- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate
all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
all predicate = P.all (T.all predicate)
{-# INLINABLE all #-}
-- | Return the maximum 'Char' within a text stream
maximum :: (Monad m) => Producer Text m () -> m (Maybe Char)
maximum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else Just $ case mc of
Nothing -> T.maximum txt
Just c -> max c (T.maximum txt)
{-# INLINABLE maximum #-}
-- | Return the minimum 'Char' within a text stream (surely very useful!)
minimum :: (Monad m) => Producer Text m () -> m (Maybe Char)
minimum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else case mc of
Nothing -> Just (T.minimum txt)
Just c -> Just (min c (T.minimum txt))
{-# INLINABLE minimum #-}
-- | Find the first element in the stream that matches the predicate
find
:: (Monad m)
=> (Char -> Bool) -> Producer Text m () -> m (Maybe Char)
find predicate p = head (p >-> filter predicate)
{-# INLINABLE find #-}
-- | Index into a text stream
index
:: (Monad m, Integral a)
=> a-> Producer Text m () -> m (Maybe Char)
index n p = head (p >-> drop n)
{-# INLINABLE index #-}
-- | Store a tally of how many segments match the given 'Text'
count :: (Monad m, Num n) => Text -> Producer Text m () -> m n
count c p = P.fold (+) 0 id (p >-> P.map (fromIntegral . T.count c))
{-# INLINABLE count #-}
{-| Consume the first character from a stream of 'Text'
'next' either fails with a 'Left' if the 'Producer' has no more characters or
succeeds with a 'Right' providing the next character and the remainder of the
'Producer'.
-}
nextChar
:: (Monad m)
=> Producer Text m r
-> m (Either r (Char, Producer Text m r))
nextChar = go
where
go p = do
x <- next p
case x of
Left r -> return (Left r)
Right (txt, p') -> case (T.uncons txt) of
Nothing -> go p'
Just (c, txt') -> return (Right (c, yield txt' >> p'))
{-# INLINABLE nextChar #-}
{-| Draw one 'Char' from a stream of 'Text', returning 'Left' if the
'Producer' is empty
-}
drawChar :: (Monad m) => Parser Text m (Maybe Char)
drawChar = do
x <- PP.draw
case x of
Nothing -> return Nothing
Just txt -> case (T.uncons txt) of
Nothing -> drawChar
Just (c, txt') -> do
PP.unDraw txt'
return (Just c)
{-# INLINABLE drawChar #-}
-- | Push back a 'Char' onto the underlying 'Producer'
unDrawChar :: (Monad m) => Char -> Parser Text m ()
unDrawChar c = modify (yield (T.singleton c) >>)
{-# INLINABLE unDrawChar #-}
{-| 'peekChar' checks the first 'Char' in the stream, but uses 'unDrawChar' to
push the 'Char' back
> peekChar = do
> x <- drawChar
> case x of
> Left _ -> return ()
> Right c -> unDrawChar c
> return x
-}
peekChar :: (Monad m) => Parser Text m (Maybe Char)
peekChar = do
x <- drawChar
case x of
Nothing -> return ()
Just c -> unDrawChar c
return x
{-# INLINABLE peekChar #-}
{-| Check if the underlying 'Producer' has no more characters
Note that this will skip over empty 'Text' chunks, unlike
'PP.isEndOfInput' from @pipes-parse@, which would consider
an empty 'Text' a valid bit of input.
> isEndOfChars = liftM isLeft peekChar
-}
isEndOfChars :: (Monad m) => Parser Text m Bool
isEndOfChars = do
x <- peekChar
return (case x of
Nothing -> True
Just _-> False )
{-# INLINABLE isEndOfChars #-}
{- | An improper lens into a stream of 'ByteString' expected to be UTF-8 encoded; the associated
stream of Text ends by returning a stream of ByteStrings beginning at the point of failure.
-}
decodeUtf8 :: Monad m => Lens' (Producer ByteString m r)
(Producer Text m (Producer ByteString m r))
decodeUtf8 k p0 = fmap (\p -> join (for p (yield . TE.encodeUtf8)))
(k (go B.empty PI.streamDecodeUtf8 p0)) where
go !carry dec0 p = do
x <- lift (next p)
case x of Left r -> return (if B.null carry
then return r -- all bytestring input was consumed
else (do yield carry -- a potentially valid fragment remains
return r))
Right (chunk, p') -> case dec0 chunk of
PI.Some text carry2 dec -> do yield text
go carry2 dec p'
PI.Other text bs -> do yield text
return (do yield bs -- an invalid blob remains
p')
{-# INLINABLE decodeUtf8 #-}
-- | Splits a 'Producer' after the given number of characters
splitAt
:: (Monad m, Integral n)
=> n
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
splitAt n0 k p0 = fmap join (k (go n0 p0))
where
go 0 p = return p
go n p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let len = fromIntegral (T.length txt)
if (len <= n)
then do
yield txt
go (n - len) p'
else do
let (prefix, suffix) = T.splitAt (fromIntegral n) txt
yield prefix
return (yield suffix >> p')
{-# INLINABLE splitAt #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of text that satisfy the predicate
-}
span
:: (Monad m)
=> (Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
span predicate k p0 = fmap join (k (go p0))
where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go p'
else do
yield prefix
return (yield suffix >> p')
{-# INLINABLE span #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of characters that don't satisfy the predicate
-}
break
:: (Monad m)
=> (Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
break predicate = span (not . predicate)
{-# INLINABLE break #-}
{-| Improper lens that splits after the first group of equivalent Chars, as
defined by the given equivalence relation
-}
groupBy
:: (Monad m)
=> (Char -> Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
groupBy equals k p0 = fmap join (k ((go p0))) where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> case T.uncons txt of
Nothing -> go p'
Just (c, _) -> (yield txt >> p') ^. span (equals c)
{-# INLINABLE groupBy #-}
-- | Improper lens that splits after the first succession of identical 'Char' s
group :: Monad m
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
group = groupBy (==)
{-# INLINABLE group #-}
{-| Improper lens that splits a 'Producer' after the first word
Unlike 'words', this does not drop leading whitespace
-}
word :: (Monad m)
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
word k p0 = fmap join (k (to p0))
where
to p = do
p' <- p^.span isSpace
p'^.break isSpace
{-# INLINABLE word #-}
line :: (Monad m)
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
line = break (== '\n')
{-# INLINABLE line #-}
-- | Intersperse a 'Char' in between the characters of stream of 'Text'
intersperse
:: (Monad m) => Char -> Producer Text m r -> Producer Text m r
intersperse c = go0
where
go0 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.intersperse c txt)
go1 p'
go1 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.singleton c)
yield (T.intersperse c txt)
go1 p'
{-# INLINABLE intersperse #-}
-- | Improper isomorphism between a 'Producer' of 'ByteString's and 'Word8's
packChars :: Monad m => Iso' (Producer Char m x) (Producer Text m x)
packChars = Data.Profunctor.dimap to (fmap from)
where
-- to :: Monad m => Producer Char m x -> Producer Text m x
to p = PG.folds step id done (p^.PG.chunksOf defaultChunkSize)
step diffAs c = diffAs . (c:)
done diffAs = T.pack (diffAs [])
-- from :: Monad m => Producer Text m x -> Producer Char m x
from p = for p (each . T.unpack)
{-# INLINABLE packChars #-}
-- | Split a text stream into 'FreeT'-delimited text streams of fixed size
chunksOf
:: (Monad m, Integral n)
=> n -> Lens' (Producer Text m r)
(FreeT (Producer Text m) m r)
chunksOf n k p0 = fmap concats (k (FreeT (go p0)))
where
go p = do
x <- next p
return $ case x of
Left r -> Pure r
Right (txt, p') -> Free $ do
p'' <- (yield txt >> p') ^. splitAt n
return $ FreeT (go p'')
{-# INLINABLE chunksOf #-}
{-| Split a text stream into sub-streams delimited by characters that satisfy the
predicate
-}
splitsWith
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> FreeT (Producer Text m) m r
splitsWith predicate p0 = FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ Free $ do
p'' <- (yield txt >> p') ^. span (not . predicate)
return $ FreeT (go1 p'')
go1 p = do
x <- nextChar p
return $ case x of
Left r -> Pure r
Right (_, p') -> Free $ do
p'' <- p' ^. span (not . predicate)
return $ FreeT (go1 p'')
{-# INLINABLE splitsWith #-}
-- | Split a text stream using the given 'Char' as the delimiter
splits :: (Monad m)
=> Char
-> Lens' (Producer Text m r)
(FreeT (Producer Text m) m r)
splits c k p =
fmap (PG.intercalates (yield (T.singleton c))) (k (splitsWith (c ==) p))
{-# INLINABLE splits #-}
{-| Isomorphism between a stream of 'Text' and groups of equivalent 'Char's , using the
given equivalence relation
-}
groupsBy
:: Monad m
=> (Char -> Char -> Bool)
-> Lens' (Producer Text m x) (FreeT (Producer Text m) m x)
groupsBy equals k p0 = fmap concats (k (FreeT (go p0))) where
go p = do x <- next p
case x of Left r -> return (Pure r)
Right (bs, p') -> case T.uncons bs of
Nothing -> go p'
Just (c, _) -> do return $ Free $ do
p'' <- (yield bs >> p')^.span (equals c)
return $ FreeT (go p'')
{-# INLINABLE groupsBy #-}
-- | Like 'groupsBy', where the equality predicate is ('==')
groups
:: Monad m
=> Lens' (Producer Text m x) (FreeT (Producer Text m) m x)
groups = groupsBy (==)
{-# INLINABLE groups #-}
{-| Split a text stream into 'FreeT'-delimited lines
-}
lines
:: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r)
lines = Data.Profunctor.dimap _lines (fmap _unlines)
where
_lines p0 = FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ Free $ go1 (yield txt >> p')
go1 p = do
p' <- p ^. break ('\n' ==)
return $ FreeT $ do
x <- nextChar p'
case x of
Left r -> return $ Pure r
Right (_, p'') -> go0 p''
-- _unlines
-- :: Monad m
-- => FreeT (Producer Text m) m x -> Producer Text m x
_unlines = concats . PG.maps (<* yield (T.singleton '\n'))
{-# INLINABLE lines #-}
-- | Split a text stream into 'FreeT'-delimited words
words
:: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r)
words = Data.Profunctor.dimap go (fmap _unwords)
where
go p = FreeT $ do
x <- next (p >-> dropWhile isSpace)
return $ case x of
Left r -> Pure r
Right (bs, p') -> Free $ do
p'' <- (yield bs >> p') ^. break isSpace
return (go p'')
_unwords = PG.intercalates (yield $ T.singleton ' ')
{-# INLINABLE words #-}
{-| 'intercalate' concatenates the 'FreeT'-delimited text streams after
interspersing a text stream in between them
-}
intercalate
:: (Monad m)
=> Producer Text m ()
-> FreeT (Producer Text m) m r
-> Producer Text m r
intercalate p0 = go0
where
go0 f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
f' <- p
go1 f'
go1 f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
p0
f' <- p
go1 f'
{-# INLINABLE intercalate #-}
{-| Join 'FreeT'-delimited lines into a text stream
-}
unlines
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unlines = go
where
go f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
f' <- p
yield $ T.singleton '\n'
go f'
{-# INLINABLE unlines #-}
{-| Join 'FreeT'-delimited words into a text stream
-}
unwords
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unwords = intercalate (yield $ T.singleton ' ')
{-# INLINABLE unwords #-}
{- $parse
The following parsing utilities are single-character analogs of the ones found
@pipes-parse@.
-}
{- $reexports
@Data.Text@ re-exports the 'Text' type.
@Pipes.Parse@ re-exports 'input', 'concat', 'FreeT' (the type) and the 'Parse' synonym.
-}
{- | Use a 'Codec' as a pipes-style 'Lens' into a byte stream; the available 'Codec' s are
'utf8', 'utf16_le', 'utf16_be', 'utf32_le', 'utf32_be' . The 'Codec' concept and the
individual 'Codec' definitions follow the enumerator and conduit libraries.
Utf8 is handled differently in this library -- without the use of 'unsafePerformIO' &co
to catch 'Text' exceptions; but the same 'mypipe ^. codec utf8' interface can be used.
'mypipe ^. decodeUtf8' should be the same, but has a somewhat more direct and thus perhaps
better implementation.
-}
codec :: Monad m => Codec -> Lens' (Producer ByteString m r) (Producer Text m (Producer ByteString m r))
codec (Codec _ enc dec) k p0 = fmap (\p -> join (for p (yield . fst . enc)))
(k (decoder (dec B.empty) p0) ) where
decoder :: Monad m => PI.Decoding -> Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decoder !d p0 = case d of
PI.Other txt bad -> do yield txt
return (do yield bad
p0)
PI.Some txt extra dec -> do yield txt
x <- lift (next p0)
case x of Left r -> return (do yield extra
return r)
Right (chunk,p1) -> decoder (dec chunk) p1
{- | ascii and latin encodings only represent a small fragment of 'Text'; thus we cannot
use the pipes 'Lens' style to work with them. Rather we simply define functions
each way.
'encodeAscii' : Reduce as much of your stream of 'Text' actually is ascii to a byte stream,
returning the rest of the 'Text' at the first non-ascii 'Char'
-}
encodeAscii :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r)
encodeAscii = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if T.null chunk
then go p'
else let (safe, unsafe) = T.span (\c -> ord c <= 0x7F) chunk
in do yield (B8.pack (T.unpack safe))
if T.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce as much of your stream of 'Text' actually is iso8859 or latin1 to a byte stream,
returning the rest of the 'Text' upon hitting any non-latin 'Char'
-}
encodeIso8859_1 :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r)
encodeIso8859_1 = go where
go p = do etxt <- lift (next p)
case etxt of
Left r -> return (return r)
Right (txt, p') ->
if T.null txt
then go p'
else let (safe, unsafe) = T.span (\c -> ord c <= 0xFF) txt
in do yield (B8.pack (T.unpack safe))
if T.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce a byte stream to a corresponding stream of ascii chars, returning the
unused 'ByteString' upon hitting an un-ascii byte.
-}
decodeAscii :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeAscii = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if B.null chunk
then go p'
else let (safe, unsafe) = B.span (<= 0x7F) chunk
in do yield (T.pack (B8.unpack safe))
if B.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce a byte stream to a corresponding stream of ascii chars, returning the
unused 'ByteString' upon hitting the rare un-latinizable byte.
-}
decodeIso8859_1 :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeIso8859_1 = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if B.null chunk
then go p'
else let (safe, unsafe) = B.span (<= 0xFF) chunk
in do yield (T.pack (B8.unpack safe))
if B.null unsafe
then go p'
else return $ do yield unsafe
p'
|