1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
|
{-# LANGUAGE RankNTypes, TypeFamilies #-}
{-| This module provides @pipes@ utilities for \"byte streams\", which are
streams of strict 'Text's chunks. Use byte streams to interact
with both 'IO.Handle's and lazy 'Text's.
To stream to or from 'IO.Handle's, use 'fromHandle' or 'toHandle'. For
example, the following program copies data from one file to another:
> import Pipes
> import qualified Pipes.Text as P
> import System.IO
>
> main =
> withFile "inFile.txt" ReadMode $ \hIn ->
> withFile "outFile.txt" WriteMode $ \hOut ->
> runEffect $ P.fromHandle hIn >-> P.toHandle hOut
You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin'
and 'stdout' proxies, like in the following \"echo\" program:
> main = runEffect $ P.stdin >-> P.stdout
You can also translate pure lazy 'TL.Text's to and from proxies:
> import qualified Data.Text.Lazy as TL
>
> main = runEffect $ P.fromLazy (TL.pack "Hello, world!\n") >-> P.stdout
In addition, this module provides many functions equivalent to lazy
'Text' functions so that you can transform or fold byte streams. For
example, to stream only the first three lines of 'stdin' to 'stdout' you
would write:
> import Pipes
> import qualified Pipes.Text as PT
> import qualified Pipes.Parse as PP
>
> main = runEffect $ takeLines 3 PB.stdin >-> PT.stdout
> where
> takeLines n = PB.unlines . PP.takeFree n . PT.lines
The above program will never bring more than one chunk (~ 32 KB) into
memory, no matter how long the lines are.
Note that functions in this library are designed to operate on streams that
are insensitive to chunk boundaries. This means that they may freely split
chunks into smaller chunks and /discard empty chunks/. However, they will
/never concatenate chunks/ in order to provide strict upper bounds on memory
usage.
-}
module Data.Text.Pipes (
-- * Producers
fromLazy,
stdin,
fromHandle,
readFile,
stdinLn,
-- hGetSome,
-- hGet,
-- * Servers
-- hGetSomeN,
-- hGetN,
-- * Consumers
stdout,
stdoutLn,
toHandle,
writeFile,
-- * Pipes
map,
concatMap,
take,
drop,
takeWhile,
dropWhile,
filter,
-- elemIndices,
-- findIndices,
scan,
-- * Folds
toLazy,
toLazyM,
fold,
head,
last,
null,
length,
any,
all,
maximum,
minimum,
-- elem,
-- notElem,
find,
index,
-- elemIndex,
-- findIndex,
-- count,
-- * Splitters
splitAt,
chunksOf,
span,
break,
splitWith,
split,
groupBy,
group,
lines,
words,
-- * Transformations
intersperse,
-- * Joiners
intercalate,
unlines,
unwords,
-- * Low-level Parsers
-- $parse
nextByte,
drawByte,
unDrawByte,
peekByte,
isEndOfBytes,
-- takeWhile',
-- * Re-exports
-- $reexports
module Data.Text,
-- module Data.Word,
module Pipes.Parse
) where
import Control.Exception (throwIO, try)
import Control.Monad (liftM, unless)
import Control.Monad.Trans.State.Strict (StateT)
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Data.Text (Text)
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Text.Lazy.Internal (foldrChunks, defaultChunkSize)
import Data.ByteString.Unsafe (unsafeTake, unsafeDrop)
import Data.Char (ord)
import Data.Functor.Identity (Identity)
import qualified Data.List as List
import Foreign.C.Error (Errno(Errno), ePIPE)
import qualified GHC.IO.Exception as G
import Pipes
import qualified Pipes.ByteString.Parse as PBP
import Pipes.ByteString.Parse (
nextByte, drawByte, unDrawByte, peekByte, isEndOfBytes )
import Pipes.Core (respond, Server')
import qualified Pipes.Parse as PP
import Pipes.Parse (input, concat, FreeT)
import qualified Pipes.Safe.Prelude as Safe
import qualified Pipes.Safe as Safe
import Pipes.Safe (MonadSafe(..), Base(..))
import qualified Pipes.Prelude as P
import qualified System.IO as IO
import Data.Char (isSpace)
import Prelude hiding (
all,
any,
break,
concat,
concatMap,
drop,
dropWhile,
elem,
filter,
head,
last,
lines,
length,
map,
maximum,
minimum,
notElem,
null,
readFile,
span,
splitAt,
take,
takeWhile,
unlines,
unwords,
words,
writeFile )
-- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's
fromLazy :: (Monad m) => TL.Text -> Producer' Text m ()
fromLazy = foldrChunks (\e a -> yield e >> a) (return ())
{-# INLINABLE fromLazy #-}
-- | Stream bytes from 'stdin'
stdin :: MonadIO m => Producer' Text m ()
stdin = fromHandle IO.stdin
{-# INLINABLE stdin #-}
-- | Convert a 'IO.Handle' into a text stream using a chunk size
-- determined by the good sense of the text library.
fromHandle :: MonadIO m => IO.Handle -> Producer' Text m ()
fromHandle h = go where
go = do txt <- liftIO (T.hGetChunk h)
unless (T.null txt) $ do yield txt
go
{-# INLINABLE fromHandle#-}
{-| Stream text from a file using Pipes.Safe
>>> runSafeT $ runEffect $ readFile "README.md" >-> map toUpper >-> hoist lift stdout
TEXT-PIPES
==========
TEXT PIPES, SOMEHOW TO BE FUSED WITH `PIPES-TEXT`.
...
>>>
-}
readFile :: (MonadSafe m, Base m ~ IO) => FilePath -> Producer' Text m ()
readFile file = Safe.withFile file IO.ReadMode fromHandle
{-# INLINABLE readFile #-}
stdinLn :: MonadIO m => Producer' Text m ()
stdinLn = go
where
go = do
eof <- liftIO (IO.hIsEOF IO.stdin)
unless eof $ do
txt <- liftIO (T.hGetLine IO.stdin)
yield txt
go
{-| Convert a handle into a byte stream using a fixed chunk size
'hGet' waits until exactly the requested number of bytes are available for
each chunk.
-}
-- hGet :: MonadIO m => Int -> IO.Handle -> Producer' Text m ()
-- hGet size h = go where
-- go = do
-- eof <- liftIO (IO.hIsEOF h)
-- if eof
-- then return ()
-- else do
-- bs <- liftIO (T.hGet h size)
-- yield bs
-- go
-- {-# INLINABLE hGet #-}
{-| Like 'hGetSome', except you can vary the maximum chunk size for each request
-}
-- hGetSomeN :: MonadIO m => IO.Handle -> Int -> Server' Int Text m ()
-- hGetSomeN h = go where
-- go size = do
-- eof <- liftIO (IO.hIsEOF h)
-- if eof
-- then return ()
-- else do
-- bs <- liftIO (T.hGetSome h size)
-- size2 <- respond bs
-- go size2
-- {-# INLINABLE hGetSomeN #-}
--
-- -- | Like 'hGet', except you can vary the chunk size for each request
-- hGetN :: MonadIO m => IO.Handle -> Int -> Server' Int Text m ()
-- hGetN h = go where
-- go size = do
-- eof <- liftIO (IO.hIsEOF h)
-- if eof
-- then return ()
-- else do
-- bs <- liftIO (T.hGet h size)
-- size2 <- respond bs
-- go size2
-- {-# INLINABLE hGetN #-}
{-| Stream bytes to 'stdout'
Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe.
Note: For best performance, use @(for source (liftIO . putStr))@ instead of
@(source >-> stdout)@.
-}
stdout :: MonadIO m => Consumer' Text m ()
stdout = go
where
go = do
txt <- await
x <- liftIO $ try (T.putStr txt)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdout #-}
stdoutLn :: (MonadIO m) => Consumer' Text m ()
stdoutLn = go
where
go = do
str <- await
x <- liftIO $ try (T.putStrLn str)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdoutLn #-}
{-| Convert a byte stream into a 'Handle'
Note: For best performance, use @(for source (liftIO . hPutStr handle))@
instead of @(source >-> toHandle handle)@.
-}
toHandle :: MonadIO m => IO.Handle -> Consumer' Text m r
toHandle h = for cat (liftIO . T.hPutStr h)
{-# INLINABLE toHandle #-}
writeFile :: (MonadSafe m, Base m ~ IO) => FilePath -> Consumer' Text m ()
writeFile file = Safe.withFile file IO.WriteMode toHandle
-- | Apply a transformation to each 'Char' in the stream
map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r
map f = P.map (T.map f)
{-# INLINABLE map #-}
-- | Map a function over the byte stream and concatenate the results
concatMap
:: (Monad m) => (Char -> Text) -> Pipe Text Text m r
concatMap f = P.map (T.concatMap f)
{-# INLINABLE concatMap #-}
-- | @(take n)@ only allows @n@ bytes to pass
take :: (Monad m, Integral a) => a -> Pipe Text Text m ()
take n0 = go n0 where
go n
| n <= 0 = return ()
| otherwise = do
bs <- await
let len = fromIntegral (T.length bs)
if (len > n)
then yield (T.take (fromIntegral n) bs)
else do
yield bs
go (n - len)
{-# INLINABLE take #-}
-- | @(dropD n)@ drops the first @n@ bytes
drop :: (Monad m, Integral a) => a -> Pipe Text Text m r
drop n0 = go n0 where
go n
| n <= 0 = cat
| otherwise = do
bs <- await
let len = fromIntegral (T.length bs)
if (len >= n)
then do
yield (T.drop (fromIntegral n) bs)
cat
else go (n - len)
{-# INLINABLE drop #-}
-- | Take bytes until they fail the predicate
takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m ()
takeWhile predicate = go
where
go = do
bs <- await
let (prefix, suffix) = T.span predicate bs
if (T.null suffix)
then do
yield bs
go
else yield prefix
{-# INLINABLE takeWhile #-}
-- | Drop bytes until they fail the predicate
dropWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
dropWhile predicate = go where
go = do
bs <- await
case T.findIndex (not . predicate) bs of
Nothing -> go
Just i -> do
yield (T.drop i bs)
cat
{-# INLINABLE dropWhile #-}
-- | Only allows 'Char's to pass if they satisfy the predicate
filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
filter predicate = P.map (T.filter predicate)
{-# INLINABLE filter #-}
-- | Stream all indices whose elements match the given 'Char'
-- elemIndices :: (Monad m, Num n) => Char -> Pipe Text n m r
-- elemIndices w8 = findIndices (w8 ==)
-- {-# INLINABLE elemIndices #-}
-- | Stream all indices whose elements satisfy the given predicate
-- findIndices :: (Monad m, Num n) => (Char -> Bool) -> Pipe Text n m r
-- findIndices predicate = go 0
-- where
-- go n = do
-- bs <- await
-- each $ List.map (\i -> n + fromIntegral i) (T.findIndices predicate bs)
-- go $! n + fromIntegral (T.length bs)
-- {-# INLINABLE findIndices #-}
-- | Strict left scan over the bytes
scan
:: (Monad m)
=> (Char -> Char -> Char) -> Char -> Pipe Text Text m r
scan step begin = go begin
where
go w8 = do
bs <- await
let bs' = T.scanl step w8 bs
w8' = T.last bs'
yield bs'
go w8'
{-# INLINABLE scan #-}
{-| Fold a pure 'Producer' of strict 'Text's into a lazy
'TL.Text'
-}
toLazy :: Producer Text Identity () -> TL.Text
toLazy = TL.fromChunks . P.toList
{-# INLINABLE toLazy #-}
{-| Fold an effectful 'Producer' of strict 'Text's into a lazy
'TL.Text'
Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for
simple testing purposes. Idiomatic @pipes@ style consumes the chunks
immediately as they are generated instead of loading them all into memory.
-}
toLazyM :: (Monad m) => Producer Text m () -> m TL.Text
toLazyM = liftM TL.fromChunks . P.toListM
{-# INLINABLE toLazyM #-}
-- | Reduce the stream of bytes using a strict left fold
fold
:: Monad m
=> (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r
fold step begin done = P.fold (\x bs -> T.foldl' step x bs) begin done
{-# INLINABLE fold #-}
-- | Retrieve the first 'Char'
head :: (Monad m) => Producer Text m () -> m (Maybe Char)
head = go
where
go p = do
x <- nextChar p
case x of
Left _ -> return Nothing
Right (w8, _) -> return (Just w8)
{-# INLINABLE head #-}
-- | Retrieve the last 'Char'
last :: (Monad m) => Producer Text m () -> m (Maybe Char)
last = go Nothing
where
go r p = do
x <- next p
case x of
Left () -> return r
Right (bs, p') ->
if (T.null bs)
then go r p'
else go (Just $ T.last bs) p'
-- TODO: Change this to 'unsafeLast' when bytestring-0.10.2.0
-- becomes more widespread
{-# INLINABLE last #-}
-- | Determine if the stream is empty
null :: (Monad m) => Producer Text m () -> m Bool
null = P.all T.null
{-# INLINABLE null #-}
-- | Count the number of bytes
length :: (Monad m, Num n) => Producer Text m () -> m n
length = P.fold (\n bs -> n + fromIntegral (T.length bs)) 0 id
{-# INLINABLE length #-}
-- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate
any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
any predicate = P.any (T.any predicate)
{-# INLINABLE any #-}
-- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate
all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
all predicate = P.all (T.all predicate)
{-# INLINABLE all #-}
-- | Return the maximum 'Char' within a byte stream
maximum :: (Monad m) => Producer Text m () -> m (Maybe Char)
maximum = P.fold step Nothing id
where
step mw8 bs =
if (T.null bs)
then mw8
else Just $ case mw8 of
Nothing -> T.maximum bs
Just w8 -> max w8 (T.maximum bs)
{-# INLINABLE maximum #-}
-- | Return the minimum 'Char' within a byte stream
minimum :: (Monad m) => Producer Text m () -> m (Maybe Char)
minimum = P.fold step Nothing id
where
step mw8 bs =
if (T.null bs)
then mw8
else case mw8 of
Nothing -> Just (T.minimum bs)
Just w8 -> Just (min w8 (T.minimum bs))
{-# INLINABLE minimum #-}
-- | Determine whether any element in the byte stream matches the given 'Char'
-- elem :: (Monad m) => Char -> Producer Text m () -> m Bool
-- elem w8 = P.any (T.elem w8)
-- {-# INLINABLE elem #-}
--
-- {-| Determine whether all elements in the byte stream do not match the given
-- 'Char'
-- -}
-- notElem :: (Monad m) => Char -> Producer Text m () -> m Bool
-- notElem w8 = P.all (T.notElem w8)
-- {-# INLINABLE notElem #-}
-- | Find the first element in the stream that matches the predicate
find
:: (Monad m)
=> (Char -> Bool) -> Producer Text m () -> m (Maybe Char)
find predicate p = head (p >-> filter predicate)
{-# INLINABLE find #-}
-- | Index into a byte stream
index
:: (Monad m, Integral a)
=> a-> Producer Text m () -> m (Maybe Char)
index n p = head (p >-> drop n)
{-# INLINABLE index #-}
-- | Find the index of an element that matches the given 'Char'
-- elemIndex
-- :: (Monad m, Num n) => Char -> Producer Text m () -> m (Maybe n)
-- elemIndex w8 = findIndex (w8 ==)
-- {-# INLINABLE elemIndex #-}
-- | Store the first index of an element that satisfies the predicate
-- findIndex
-- :: (Monad m, Num n)
-- => (Char -> Bool) -> Producer Text m () -> m (Maybe n)
-- findIndex predicate p = P.head (p >-> findIndices predicate)
-- {-# INLINABLE findIndex #-}
--
-- -- | Store a tally of how many elements match the given 'Char'
-- count :: (Monad m, Num n) => Char -> Producer Text m () -> m n
-- count w8 p = P.fold (+) 0 id (p >-> P.map (fromIntegral . T.count w8))
-- {-# INLINABLE count #-}
-- | Splits a 'Producer' after the given number of bytes
splitAt
:: (Monad m, Integral n)
=> n
-> Producer Text m r
-> Producer' Text m (Producer Text m r)
splitAt = go
where
go 0 p = return p
go n p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (bs, p') -> do
let len = fromIntegral (T.length bs)
if (len <= n)
then do
yield bs
go (n - len) p'
else do
let (prefix, suffix) = T.splitAt (fromIntegral n) bs
yield prefix
return (yield suffix >> p')
{-# INLINABLE splitAt #-}
-- | Split a byte stream into 'FreeT'-delimited byte streams of fixed size
chunksOf
:: (Monad m, Integral n)
=> n -> Producer Text m r -> FreeT (Producer Text m) m r
chunksOf n p0 = PP.FreeT (go p0)
where
go p = do
x <- next p
return $ case x of
Left r -> PP.Pure r
Right (bs, p') -> PP.Free $ do
p'' <- splitAt n (yield bs >> p')
return $ PP.FreeT (go p'')
{-# INLINABLE chunksOf #-}
{-| Split a byte stream in two, where the first byte stream is the longest
consecutive group of bytes that satisfy the predicate
-}
span
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> Producer' Text m (Producer Text m r)
span predicate = go
where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (bs, p') -> do
let (prefix, suffix) = T.span predicate bs
if (T.null suffix)
then do
yield bs
go p'
else do
yield prefix
return (yield suffix >> p')
{-# INLINABLE span #-}
{-| Split a byte stream in two, where the first byte stream is the longest
consecutive group of bytes that don't satisfy the predicate
-}
break
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> Producer Text m (Producer Text m r)
break predicate = span (not . predicate)
{-# INLINABLE break #-}
{-| Split a byte stream into sub-streams delimited by bytes that satisfy the
predicate
-}
splitWith
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> PP.FreeT (Producer Text m) m r
splitWith predicate p0 = PP.FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (bs, p') ->
if (T.null bs)
then go0 p'
else return $ PP.Free $ do
p'' <- span (not . predicate) (yield bs >> p')
return $ PP.FreeT (go1 p'')
go1 p = do
x <- nextChar p
return $ case x of
Left r -> PP.Pure r
Right (_, p') -> PP.Free $ do
p'' <- span (not . predicate) p'
return $ PP.FreeT (go1 p'')
{-# INLINABLE splitWith #-}
-- | Split a byte stream using the given 'Char' as the delimiter
split :: (Monad m)
=> Char
-> Producer Text m r
-> FreeT (Producer Text m) m r
split w8 = splitWith (w8 ==)
{-# INLINABLE split #-}
{-| Group a byte stream into 'FreeT'-delimited byte streams using the supplied
equality predicate
-}
groupBy
:: (Monad m)
=> (Char -> Char -> Bool)
-> Producer Text m r
-> FreeT (Producer Text m) m r
groupBy equal p0 = PP.FreeT (go p0)
where
go p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (bs, p') -> case (T.uncons bs) of
Nothing -> go p'
Just (w8, _) -> do
return $ PP.Free $ do
p'' <- span (equal w8) (yield bs >> p')
return $ PP.FreeT (go p'')
{-# INLINABLE groupBy #-}
-- | Group a byte stream into 'FreeT'-delimited byte streams of identical bytes
group
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
group = groupBy (==)
{-# INLINABLE group #-}
{-| Split a byte stream into 'FreeT'-delimited lines
Note: This function is purely for demonstration purposes since it assumes a
particular encoding. You should prefer the 'Data.Text.Text' equivalent of
this function from the upcoming @pipes-text@ library.
-}
lines
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
lines p0 = PP.FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (bs, p') ->
if (T.null bs)
then go0 p'
else return $ PP.Free $ go1 (yield bs >> p')
go1 p = do
p' <- break ('\n' ==) p
return $ PP.FreeT (go2 p')
go2 p = do
x <- nextChar p
return $ case x of
Left r -> PP.Pure r
Right (_, p') -> PP.Free (go1 p')
{-# INLINABLE lines #-}
nextChar = undefined
{-| Split a byte stream into 'FreeT'-delimited words
Note: This function is purely for demonstration purposes since it assumes a
particular encoding. You should prefer the 'Data.Text.Text' equivalent of
this function from the upcoming @pipes-text@ library.
-}
words
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
words p0 = removeEmpty (splitWith isSpace p0)
where
removeEmpty f = PP.FreeT $ do
x <- PP.runFreeT f
case x of
PP.Pure r -> return (PP.Pure r)
PP.Free p -> do
y <- next p
case y of
Left f' -> PP.runFreeT (removeEmpty f')
Right (bs, p') -> return $ PP.Free $ do
yield bs
f' <- p'
return (removeEmpty f')
{-# INLINABLE words #-}
-- | Intersperse a 'Char' in between the bytes of the byte stream
intersperse
:: (Monad m) => Char -> Producer Text m r -> Producer Text m r
intersperse w8 = go0
where
go0 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (bs, p') -> do
yield (T.intersperse w8 bs)
go1 p'
go1 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (bs, p') -> do
yield (T.singleton w8)
yield (T.intersperse w8 bs)
go1 p'
{-# INLINABLE intersperse #-}
{-| 'intercalate' concatenates the 'FreeT'-delimited byte streams after
interspersing a byte stream in between them
-}
intercalate
:: (Monad m)
=> Producer Text m ()
-> FreeT (Producer Text m) m r
-> Producer Text m r
intercalate p0 = go0
where
go0 f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
f' <- p
go1 f'
go1 f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
p0
f' <- p
go1 f'
{-# INLINABLE intercalate #-}
{-| Join 'FreeT'-delimited lines into a byte stream
Note: This function is purely for demonstration purposes since it assumes a
particular encoding. You should prefer the 'Data.Text.Text' equivalent of
this function from the upcoming @pipes-text@ library.
-}
unlines
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unlines = go
where
go f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
f' <- p
yield $ T.singleton '\n'
go f'
{-# INLINABLE unlines #-}
{-| Join 'FreeT'-delimited words into a byte stream
Note: This function is purely for demonstration purposes since it assumes a
particular encoding. You should prefer the 'Data.Text.Text' equivalent of
this function from the upcoming @pipes-text@ library.
-}
unwords
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unwords = intercalate (yield $ T.pack " ")
{-# INLINABLE unwords #-}
{- $parse
The following parsing utilities are single-byte analogs of the ones found
in @pipes-parse@.
-}
{-| Take bytes until they fail the predicate
Unlike 'takeWhile', this 'PP.unDraw's unused bytes
-}
-- takeWhile'
-- :: (Monad m)
-- => (Char -> Bool)
-- -> Pipe Text Text (StateT (Producer Text m r) m) ()
-- takeWhile' = PBP.takeWhile
-- {-# INLINABLE takeWhile' #-}
-- {-# DEPRECATED takeWhile' "Use Pipes.Text.Parse.takeWhile instead" #-}
{- $reexports
"Pipes.Text.Parse" re-exports 'nextByte', 'drawByte', 'unDrawByte',
'peekByte', and 'isEndOfBytes'.
@Data.Text@ re-exports the 'Text' type.
@Data.Word@ re-exports the 'Char' type.
@Pipes.Parse@ re-exports 'input', 'concat', and 'FreeT' (the type).
-}
|