{-# LANGUAGE RankNTypes, TypeFamilies, CPP #-}
{-| This module provides @pipes@ utilities for \"text streams\", which are
streams of 'Text' chunks. The individual chunks are uniformly @strict@, but
a 'Producer' can be converted to and from lazy 'Text's; an 'IO.Handle' can
be associated with a 'Producer' or 'Consumer' according as it is read or written to.
To stream to or from 'IO.Handle's, one can use 'fromHandle' or 'toHandle'. For
example, the following program copies a document from one file to another:
> import Pipes
> import qualified Data.Text.Pipes as Text
> import System.IO
>
> main =
> withFile "inFile.txt" ReadMode $ \hIn ->
> withFile "outFile.txt" WriteMode $ \hOut ->
> runEffect $ Text.fromHandle hIn >-> Text.toHandle hOut
To stream from files, the following is perhaps more Prelude-like (note that it uses Pipes.Safe):
> import Pipes
> import qualified Data.Text.Pipes as Text
> import Pipes.Safe
>
> main = runSafeT $ runEffect $ Text.readFile "inFile.txt" >-> Text.writeFile "outFile.txt"
You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin'
and 'stdout' proxies, as with the following \"echo\" program:
> main = runEffect $ Text.stdin >-> Text.stdout
You can also translate pure lazy 'TL.Text's to and from proxies:
> main = runEffect $ Text.fromLazy (TL.pack "Hello, world!\n") >-> Text.stdout
In addition, this module provides many functions equivalent to lazy
'Text' functions so that you can transform or fold text streams. For
example, to stream only the first three lines of 'stdin' to 'stdout' you
might write:
> import Pipes
> import qualified Pipes.Text as Text
> import qualified Pipes.Parse as Parse
>
> main = runEffect $ takeLines 3 Text.stdin >-> Text.stdout
> where
> takeLines n = Text.unlines . Parse.takeFree n . Text.lines
The above program will never bring more than one chunk of text (~ 32 KB) into
memory, no matter how long the lines are.
Note that functions in this library are designed to operate on streams that
are insensitive to text boundaries. This means that they may freely split
text into smaller texts and /discard empty texts/. However, they will
/never concatenate texts/ in order to provide strict upper bounds on memory
usage.
-}
module Pipes.Text (
-- * Producers
fromLazy,
stdin,
fromHandle,
readFile,
stdinLn,
-- * Consumers
stdout,
stdoutLn,
toHandle,
writeFile,
-- * Pipes
map,
concatMap,
take,
drop,
takeWhile,
dropWhile,
filter,
scan,
encodeUtf8,
#if MIN_VERSION_text(0,11,4)
pipeDecodeUtf8,
pipeDecodeUtf8With,
#endif
pack,
unpack,
toCaseFold,
toLower,
toUpper,
stripStart,
-- * Folds
toLazy,
toLazyM,
fold,
head,
last,
null,
length,
any,
all,
maximum,
minimum,
find,
index,
count,
-- * Splitters
splitAt,
chunksOf,
span,
break,
splitWith,
split,
groupBy,
group,
lines,
words,
#if MIN_VERSION_text(0,11,4)
decodeUtf8,
decodeUtf8With,
#endif
-- * Transformations
intersperse,
-- * Joiners
intercalate,
unlines,
unwords,
-- * Character Parsers
-- $parse
nextChar,
drawChar,
unDrawChar,
peekChar,
isEndOfChars,
-- * Re-exports
-- $reexports
module Data.Text,
module Pipes.Parse
) where
import Control.Exception (throwIO, try)
import Control.Monad (liftM, unless)
import Control.Monad.Trans.State.Strict (StateT(..))
import qualified Data.Text as T
import qualified Data.Text.IO as T
import qualified Data.Text.Encoding as TE
import qualified Data.Text.Encoding.Error as TE
import Data.Text (Text)
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Text.Lazy.Internal (foldrChunks, defaultChunkSize)
import Data.ByteString.Unsafe (unsafeTake, unsafeDrop)
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Char (ord, isSpace)
import Data.Functor.Identity (Identity)
import qualified Data.List as List
import Foreign.C.Error (Errno(Errno), ePIPE)
import qualified GHC.IO.Exception as G
import Pipes
import qualified Pipes.ByteString as PB
import qualified Pipes.ByteString.Parse as PBP
import Pipes.Text.Parse (
nextChar, drawChar, unDrawChar, peekChar, isEndOfChars )
import Pipes.Core (respond, Server')
import qualified Pipes.Parse as PP
import Pipes.Parse (input, concat, FreeT)
import qualified Pipes.Safe.Prelude as Safe
import qualified Pipes.Safe as Safe
import Pipes.Safe (MonadSafe(..), Base(..))
import qualified Pipes.Prelude as P
import qualified System.IO as IO
import Data.Char (isSpace)
import Data.Word (Word8)
import Prelude hiding (
all,
any,
break,
concat,
concatMap,
drop,
dropWhile,
elem,
filter,
head,
last,
lines,
length,
map,
maximum,
minimum,
notElem,
null,
readFile,
span,
splitAt,
take,
takeWhile,
unlines,
unwords,
words,
writeFile )
-- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's
fromLazy :: (Monad m) => TL.Text -> Producer' Text m ()
fromLazy = foldrChunks (\e a -> yield e >> a) (return ())
{-# INLINABLE fromLazy #-}
-- | Stream text from 'stdin'
stdin :: MonadIO m => Producer' Text m ()
stdin = fromHandle IO.stdin
{-# INLINABLE stdin #-}
{-| Convert a 'IO.Handle' into a text stream using a text size
determined by the good sense of the text library.
-}
fromHandle :: MonadIO m => IO.Handle -> Producer' Text m ()
#if MIN_VERSION_text(0,11,4)
fromHandle h = go TE.streamDecodeUtf8 where
act = B.hGetSome h defaultChunkSize
go dec = do chunk <- liftIO act
case dec chunk of
TE.Some text _ dec' -> do yield text
unless (B.null chunk) (go dec')
{-# INLINE fromHandle#-}
-- bytestring fromHandle + streamDecodeUtf8 is 3 times as fast as
-- the dedicated Text IO function 'hGetChunk' ;
-- this way "runEffect $ PT.fromHandle hIn >-> PT.toHandle hOut"
-- runs the same as the conduit equivalent, only slightly slower
-- than "runEffect $ PB.fromHandle hIn >-> PB.toHandle hOut"
#else
fromHandle h = go where
go = do txt <- liftIO (T.hGetChunk h)
unless (T.null txt) $ do yield txt
go
{-# INLINABLE fromHandle#-}
#endif
{-| Stream text from a file using Pipes.Safe
>>> runSafeT $ runEffect $ Text.readFile "hello.hs" >-> Text.map toUpper >-> hoist lift Text.stdout
MAIN = PUTSTRLN "HELLO WORLD"
-}
readFile :: (MonadSafe m, Base m ~ IO) => FilePath -> Producer' Text m ()
readFile file = Safe.withFile file IO.ReadMode fromHandle
{-# INLINABLE readFile #-}
{-| Stream lines of text from stdin (for testing in ghci etc.)
>>> let safely = runSafeT . runEffect
>>> safely $ for Text.stdinLn (lift . lift . print . T.length)
hello
5
world
5
-}
stdinLn :: MonadIO m => Producer' Text m ()
stdinLn = go where
go = do
eof <- liftIO (IO.hIsEOF IO.stdin)
unless eof $ do
txt <- liftIO (T.hGetLine IO.stdin)
yield txt
go
{-| Stream text to 'stdout'
Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe.
Note: For best performance, use @(for source (liftIO . putStr))@ instead of
@(source >-> stdout)@ in suitable cases.
-}
stdout :: MonadIO m => Consumer' Text m ()
stdout = go
where
go = do
txt <- await
x <- liftIO $ try (T.putStr txt)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdout #-}
stdoutLn :: (MonadIO m) => Consumer' Text m ()
stdoutLn = go
where
go = do
str <- await
x <- liftIO $ try (T.putStrLn str)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdoutLn #-}
{-| Convert a text stream into a 'Handle'
Note: again, for best performance, where possible use
@(for source (liftIO . hPutStr handle))@ instead of @(source >-> toHandle handle)@.
-}
toHandle :: MonadIO m => IO.Handle -> Consumer' Text m r
toHandle h = for cat (liftIO . T.hPutStr h)
{-# INLINABLE toHandle #-}
{-# RULES "p >-> toHandle h" forall p h .
p >-> toHandle h = for p (\txt -> liftIO (T.hPutStr h txt))
#-}
-- | Stream text into a file. Uses @pipes-safe@.
writeFile :: (MonadSafe m, Base m ~ IO) => FilePath -> Consumer' Text m ()
writeFile file = Safe.withFile file IO.WriteMode toHandle
-- | Apply a transformation to each 'Char' in the stream
map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r
map f = P.map (T.map f)
{-# INLINABLE map #-}
{-# RULES "p >-> map f" forall p f .
p >-> map f = for p (\txt -> yield (T.map f txt))
#-}
-- | Map a function over the characters of a text stream and concatenate the results
concatMap
:: (Monad m) => (Char -> Text) -> Pipe Text Text m r
concatMap f = P.map (T.concatMap f)
{-# INLINABLE concatMap #-}
{-# RULES "p >-> concatMap f" forall p f .
p >-> concatMap f = for p (\txt -> yield (T.concatMap f txt))
#-}
-- | Transform a Pipe of 'Text' into a Pipe of 'ByteString's using UTF-8
-- encoding; @encodeUtf8 = Pipes.Prelude.map TE.encodeUtf8@ so more complex
-- encoding pipes can easily be constructed with the functions in @Data.Text.Encoding@
encodeUtf8 :: Monad m => Pipe Text ByteString m r
encodeUtf8 = P.map TE.encodeUtf8
{-# INLINEABLE encodeUtf8 #-}
{-# RULES "p >-> encodeUtf8" forall p .
p >-> encodeUtf8 = for p (\txt -> yield (TE.encodeUtf8 txt))
#-}
-- | Transform a Pipe of 'String's into one of 'Text' chunks
pack :: Monad m => Pipe String Text m r
pack = P.map T.pack
{-# INLINEABLE pack #-}
{-# RULES "p >-> pack" forall p .
p >-> pack = for p (\txt -> yield (T.pack txt))
#-}
-- | Transform a Pipes of 'Text' chunks into one of 'String's
unpack :: Monad m => Pipe Text String m r
unpack = for cat (\t -> yield (T.unpack t))
{-# INLINEABLE unpack #-}
{-# RULES "p >-> unpack" forall p .
p >-> unpack = for p (\txt -> yield (T.unpack txt))
#-}
-- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utility,
-- here acting on a 'Text' pipe, rather as they would on a lazy text
toCaseFold :: Monad m => Pipe Text Text m ()
toCaseFold = P.map T.toCaseFold
{-# INLINEABLE toCaseFold #-}
{-# RULES "p >-> toCaseFold" forall p .
p >-> toCaseFold = for p (\txt -> yield (T.toCaseFold txt))
#-}
-- | lowercase incoming 'Text'
toLower :: Monad m => Pipe Text Text m ()
toLower = P.map T.toLower
{-# INLINEABLE toLower #-}
{-# RULES "p >-> toLower" forall p .
p >-> toLower = for p (\txt -> yield (T.toLower txt))
#-}
-- | uppercase incoming 'Text'
toUpper :: Monad m => Pipe Text Text m ()
toUpper = P.map T.toUpper
{-# INLINEABLE toUpper #-}
{-# RULES "p >-> toUpper" forall p .
p >-> toUpper = for p (\txt -> yield (T.toUpper txt))
#-}
-- | Remove leading white space from an incoming succession of 'Text's
stripStart :: Monad m => Pipe Text Text m r
stripStart = do
chunk <- await
let text = T.stripStart chunk
if T.null text
then stripStart
else cat
{-# INLINEABLE stripStart #-}
-- | @(take n)@ only allows @n@ individual characters to pass;
-- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass.
take :: (Monad m, Integral a) => a -> Pipe Text Text m ()
take n0 = go n0 where
go n
| n <= 0 = return ()
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len > n)
then yield (T.take (fromIntegral n) txt)
else do
yield txt
go (n - len)
{-# INLINABLE take #-}
-- | @(drop n)@ drops the first @n@ characters
drop :: (Monad m, Integral a) => a -> Pipe Text Text m r
drop n0 = go n0 where
go n
| n <= 0 = cat
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len >= n)
then do
yield (T.drop (fromIntegral n) txt)
cat
else go (n - len)
{-# INLINABLE drop #-}
-- | Take characters until they fail the predicate
takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m ()
takeWhile predicate = go
where
go = do
txt <- await
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go
else yield prefix
{-# INLINABLE takeWhile #-}
-- | Drop characters until they fail the predicate
dropWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
dropWhile predicate = go where
go = do
txt <- await
case T.findIndex (not . predicate) txt of
Nothing -> go
Just i -> do
yield (T.drop i txt)
cat
{-# INLINABLE dropWhile #-}
-- | Only allows 'Char's to pass if they satisfy the predicate
filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
filter predicate = P.map (T.filter predicate)
{-# INLINABLE filter #-}
{-# RULES "p >-> filter q" forall p q .
p >-> filter q = for p (\txt -> yield (T.filter q txt))
#-}
-- | Strict left scan over the characters
scan
:: (Monad m)
=> (Char -> Char -> Char) -> Char -> Pipe Text Text m r
scan step begin = go begin
where
go c = do
txt <- await
let txt' = T.scanl step c txt
c' = T.last txt'
yield txt'
go c'
{-# INLINABLE scan #-}
{-| Fold a pure 'Producer' of strict 'Text's into a lazy
'TL.Text'
-}
toLazy :: Producer Text Identity () -> TL.Text
toLazy = TL.fromChunks . P.toList
{-# INLINABLE toLazy #-}
{-| Fold an effectful 'Producer' of strict 'Text's into a lazy
'TL.Text'
Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for
simple testing purposes. Idiomatic @pipes@ style consumes the chunks
immediately as they are generated instead of loading them all into memory.
-}
toLazyM :: (Monad m) => Producer Text m () -> m TL.Text
toLazyM = liftM TL.fromChunks . P.toListM
{-# INLINABLE toLazyM #-}
-- | Reduce the text stream using a strict left fold over characters
fold
:: Monad m
=> (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r
fold step begin done = P.fold (T.foldl' step) begin done
{-# INLINABLE fold #-}
-- | Retrieve the first 'Char'
head :: (Monad m) => Producer Text m () -> m (Maybe Char)
head = go
where
go p = do
x <- nextChar p
case x of
Left _ -> return Nothing
Right (c, _) -> return (Just c)
{-# INLINABLE head #-}
-- | Retrieve the last 'Char'
last :: (Monad m) => Producer Text m () -> m (Maybe Char)
last = go Nothing
where
go r p = do
x <- next p
case x of
Left () -> return r
Right (txt, p') ->
if (T.null txt)
then go r p'
else go (Just $ T.last txt) p'
{-# INLINABLE last #-}
-- | Determine if the stream is empty
null :: (Monad m) => Producer Text m () -> m Bool
null = P.all T.null
{-# INLINABLE null #-}
-- | Count the number of characters in the stream
length :: (Monad m, Num n) => Producer Text m () -> m n
length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id
{-# INLINABLE length #-}
-- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate
any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
any predicate = P.any (T.any predicate)
{-# INLINABLE any #-}
-- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate
all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
all predicate = P.all (T.all predicate)
{-# INLINABLE all #-}
-- | Return the maximum 'Char' within a text stream
maximum :: (Monad m) => Producer Text m () -> m (Maybe Char)
maximum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else Just $ case mc of
Nothing -> T.maximum txt
Just c -> max c (T.maximum txt)
{-# INLINABLE maximum #-}
-- | Return the minimum 'Char' within a text stream (surely very useful!)
minimum :: (Monad m) => Producer Text m () -> m (Maybe Char)
minimum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else case mc of
Nothing -> Just (T.minimum txt)
Just c -> Just (min c (T.minimum txt))
{-# INLINABLE minimum #-}
-- | Find the first element in the stream that matches the predicate
find
:: (Monad m)
=> (Char -> Bool) -> Producer Text m () -> m (Maybe Char)
find predicate p = head (p >-> filter predicate)
{-# INLINABLE find #-}
-- | Index into a text stream
index
:: (Monad m, Integral a)
=> a-> Producer Text m () -> m (Maybe Char)
index n p = head (p >-> drop n)
{-# INLINABLE index #-}
-- | Store a tally of how many segments match the given 'Text'
count :: (Monad m, Num n) => Text -> Producer Text m () -> m n
count c p = P.fold (+) 0 id (p >-> P.map (fromIntegral . T.count c))
{-# INLINABLE count #-}
#if MIN_VERSION_text(0,11,4)
-- | Transform a Pipe of 'ByteString's expected to be UTF-8 encoded
-- into a Pipe of Text
decodeUtf8
:: Monad m
=> Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeUtf8 = go TE.streamDecodeUtf8
where go dec p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (chunk, p') -> do
let TE.Some text l dec' = dec chunk
if B.null l
then do
yield text
go dec' p'
else return $ do
yield l
p'
{-# INLINEABLE decodeUtf8 #-}
-- | Transform a Pipe of 'ByteString's expected to be UTF-8 encoded
-- into a Pipe of Text with a replacement function of type @String -> Maybe Word8 -> Maybe Char@
-- E.g. 'Data.Text.Encoding.Error.lenientDecode', which simply replaces bad bytes with \"�\"
decodeUtf8With
:: Monad m
=> TE.OnDecodeError
-> Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeUtf8With onErr = go (TE.streamDecodeUtf8With onErr)
where go dec p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (chunk, p') -> do
let TE.Some text l dec' = dec chunk
if B.null l
then do
yield text
go dec' p'
else return $ do
yield l
p'
{-# INLINEABLE decodeUtf8With #-}
-- | A simple pipe from 'ByteString' to 'Text'; a decoding error will arise
-- with any chunk that contains a sequence of bytes that is unreadable. Otherwise
-- only few bytes will only be moved from one chunk to the next before decoding.
pipeDecodeUtf8 :: Monad m => Pipe ByteString Text m r
pipeDecodeUtf8 = go TE.streamDecodeUtf8
where go dec = do chunk <- await
case dec chunk of
TE.Some text l dec' -> do yield text
go dec'
{-# INLINEABLE pipeDecodeUtf8 #-}
-- | A simple pipe from 'ByteString' to 'Text' using a replacement function.
pipeDecodeUtf8With
:: Monad m
=> TE.OnDecodeError
-> Pipe ByteString Text m r
pipeDecodeUtf8With onErr = go (TE.streamDecodeUtf8With onErr)
where go dec = do chunk <- await
case dec chunk of
TE.Some text l dec' -> do yield text
go dec'
{-# INLINEABLE pipeDecodeUtf8With #-}
#endif
-- | Splits a 'Producer' after the given number of characters
splitAt
:: (Monad m, Integral n)
=> n
-> Producer Text m r
-> Producer' Text m (Producer Text m r)
splitAt = go
where
go 0 p = return p
go n p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let len = fromIntegral (T.length txt)
if (len <= n)
then do
yield txt
go (n - len) p'
else do
let (prefix, suffix) = T.splitAt (fromIntegral n) txt
yield prefix
return (yield suffix >> p')
{-# INLINABLE splitAt #-}
-- | Split a text stream into 'FreeT'-delimited text streams of fixed size
chunksOf
:: (Monad m, Integral n)
=> n -> Producer Text m r -> FreeT (Producer Text m) m r
chunksOf n p0 = PP.FreeT (go p0)
where
go p = do
x <- next p
return $ case x of
Left r -> PP.Pure r
Right (txt, p') -> PP.Free $ do
p'' <- splitAt n (yield txt >> p')
return $ PP.FreeT (go p'')
{-# INLINABLE chunksOf #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of text that satisfy the predicate
-}
span
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> Producer' Text m (Producer Text m r)
span predicate = go
where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go p'
else do
yield prefix
return (yield suffix >> p')
{-# INLINABLE span #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of characters that don't satisfy the predicate
-}
break
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> Producer Text m (Producer Text m r)
break predicate = span (not . predicate)
{-# INLINABLE break #-}
{-| Split a text stream into sub-streams delimited by characters that satisfy the
predicate
-}
splitWith
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> PP.FreeT (Producer Text m) m r
splitWith predicate p0 = PP.FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ PP.Free $ do
p'' <- span (not . predicate) (yield txt >> p')
return $ PP.FreeT (go1 p'')
go1 p = do
x <- nextChar p
return $ case x of
Left r -> PP.Pure r
Right (_, p') -> PP.Free $ do
p'' <- span (not . predicate) p'
return $ PP.FreeT (go1 p'')
{-# INLINABLE splitWith #-}
-- | Split a text stream using the given 'Char' as the delimiter
split :: (Monad m)
=> Char
-> Producer Text m r
-> FreeT (Producer Text m) m r
split c = splitWith (c ==)
{-# INLINABLE split #-}
{-| Group a text stream into 'FreeT'-delimited text streams using the supplied
equality predicate
-}
groupBy
:: (Monad m)
=> (Char -> Char -> Bool)
-> Producer Text m r
-> FreeT (Producer Text m) m r
groupBy equal p0 = PP.FreeT (go p0)
where
go p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (txt, p') -> case (T.uncons txt) of
Nothing -> go p'
Just (c, _) -> do
return $ PP.Free $ do
p'' <- span (equal c) (yield txt >> p')
return $ PP.FreeT (go p'')
{-# INLINABLE groupBy #-}
-- | Group a text stream into 'FreeT'-delimited text streams of identical characters
group
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
group = groupBy (==)
{-# INLINABLE group #-}
{-| Split a text stream into 'FreeT'-delimited lines
-}
lines
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
lines p0 = PP.FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (PP.Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ PP.Free $ go1 (yield txt >> p')
go1 p = do
p' <- break ('\n' ==) p
return $ PP.FreeT $ do
x <- nextChar p'
case x of
Left r -> return $ PP.Pure r
Right (_, p'') -> go0 p''
{-# INLINABLE lines #-}
-- | Split a text stream into 'FreeT'-delimited words
words
:: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r
words = go
where
go p = PP.FreeT $ do
x <- next (p >-> dropWhile isSpace)
return $ case x of
Left r -> PP.Pure r
Right (bs, p') -> PP.Free $ do
p'' <- break isSpace (yield bs >> p')
return (go p'')
{-# INLINABLE words #-}
-- | Intersperse a 'Char' in between the characters of the text stream
intersperse
:: (Monad m) => Char -> Producer Text m r -> Producer Text m r
intersperse c = go0
where
go0 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.intersperse c txt)
go1 p'
go1 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.singleton c)
yield (T.intersperse c txt)
go1 p'
{-# INLINABLE intersperse #-}
{-| 'intercalate' concatenates the 'FreeT'-delimited text streams after
interspersing a text stream in between them
-}
intercalate
:: (Monad m)
=> Producer Text m ()
-> FreeT (Producer Text m) m r
-> Producer Text m r
intercalate p0 = go0
where
go0 f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
f' <- p
go1 f'
go1 f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
p0
f' <- p
go1 f'
{-# INLINABLE intercalate #-}
{-| Join 'FreeT'-delimited lines into a text stream
-}
unlines
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unlines = go
where
go f = do
x <- lift (PP.runFreeT f)
case x of
PP.Pure r -> return r
PP.Free p -> do
f' <- p
yield $ T.singleton '\n'
go f'
{-# INLINABLE unlines #-}
{-| Join 'FreeT'-delimited words into a text stream
-}
unwords
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unwords = intercalate (yield $ T.pack " ")
{-# INLINABLE unwords #-}
{- $parse
The following parsing utilities are single-character analogs of the ones found
@pipes-parse@.
-}
{- $reexports
@Pipes.Text.Parse@ re-exports 'nextChar', 'drawChar', 'unDrawChar', 'peekChar', and 'isEndOfChars'.
@Data.Text@ re-exports the 'Text' type.
@Pipes.Parse@ re-exports 'input', 'concat', and 'FreeT' (the type).
-}