{-# LANGUAGE RankNTypes, TypeFamilies, BangPatterns, Trustworthy #-}
{-| This module provides @pipes@ utilities for \"text streams\", which are
streams of 'Text' chunks. The individual chunks are uniformly @strict@, but
a 'Producer' can be converted to and from lazy 'Text's, though this is generally
unwise. Where pipes IO replaces lazy IO, 'Producer Text m r' replaces lazy 'Text'.
An 'IO.Handle' can be associated with a 'Producer' or 'Consumer' according as it is read or written to.
To stream to or from 'IO.Handle's, one can use 'fromHandle' or 'toHandle'. For
example, the following program copies a document from one file to another:
> import Pipes
> import qualified Data.Text.Pipes as Text
> import System.IO
>
> main =
> withFile "inFile.txt" ReadMode $ \hIn ->
> withFile "outFile.txt" WriteMode $ \hOut ->
> runEffect $ Text.fromHandle hIn >-> Text.toHandle hOut
To stream from files, the following is perhaps more Prelude-like (note that it uses Pipes.Safe):
> import Pipes
> import qualified Data.Text.Pipes as Text
> import Pipes.Safe
>
> main = runSafeT $ runEffect $ Text.readFile "inFile.txt" >-> Text.writeFile "outFile.txt"
You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin'
and 'stdout' pipes, as with the following \"echo\" program:
> main = runEffect $ Text.stdin >-> Text.stdout
You can also translate pure lazy 'TL.Text's to and from pipes:
> main = runEffect $ Text.fromLazy (TL.pack "Hello, world!\n") >-> Text.stdout
In addition, this module provides many functions equivalent to lazy
'Text' functions so that you can transform or fold text streams. For
example, to stream only the first three lines of 'stdin' to 'stdout' you
might write:
> import Pipes
> import qualified Pipes.Text as Text
> import qualified Pipes.Parse as Parse
>
> main = runEffect $ takeLines 3 Text.stdin >-> Text.stdout
> where
> takeLines n = Text.unlines . Parse.takeFree n . Text.lines
The above program will never bring more than one chunk of text (~ 32 KB) into
memory, no matter how long the lines are.
Note that functions in this library are designed to operate on streams that
are insensitive to text boundaries. This means that they may freely split
text into smaller texts, /discard empty texts/. However, apart from the
special case of 'concatMap', they will /never concatenate texts/ in order
to provide strict upper bounds on memory usage -- with the single exception of 'concatMap'.
-}
module Pipes.Text (
-- * Producers
fromLazy
, stdin
, fromHandle
, readFile
-- * Consumers
, stdout
, toHandle
, writeFile
-- * Pipes
, map
, concatMap
, take
, drop
, takeWhile
, dropWhile
, filter
, scan
, encodeUtf8
, pack
, unpack
, toCaseFold
, toLower
, toUpper
, stripStart
-- * Folds
, toLazy
, toLazyM
, foldChars
, head
, last
, null
, length
, any
, all
, maximum
, minimum
, find
, index
, count
-- * Primitive Character Parsers
-- $parse
, nextChar
, drawChar
, unDrawChar
, peekChar
, isEndOfChars
-- * Parsing Lenses
, splitAt
, span
, break
, groupBy
, group
, word
, line
-- * Decoding Lenses
, decodeUtf8
, codec
-- * Codecs
, utf8
, utf16_le
, utf16_be
, utf32_le
, utf32_be
-- * Other Decoding/Encoding Functions
, decodeIso8859_1
, decodeAscii
, encodeIso8859_1
, encodeAscii
-- * FreeT Splitters
, chunksOf
, splitsWith
, splits
-- , groupsBy
-- , groups
, lines
, words
-- * Transformations
, intersperse
, packChars
-- * Joiners
, intercalate
, unlines
, unwords
-- * Re-exports
-- $reexports
, Decoding(..)
, streamDecodeUtf8
, decodeSomeUtf8
, Codec(..)
, TextException(..)
, module Data.ByteString
, module Data.Text
, module Data.Profunctor
, module Data.Word
, module Pipes.Parse
, module Pipes.Group
) where
import Control.Exception (throwIO, try)
import Control.Applicative ((<*))
import Control.Monad (liftM, unless, join)
import Control.Monad.Trans.State.Strict (StateT(..), modify)
import Data.Monoid ((<>))
import qualified Data.Text as T
import qualified Data.Text.IO as T
import qualified Data.Text.Encoding as TE
import qualified Data.Text.Encoding.Error as TE
import Data.Text (Text)
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL
import Data.Text.Lazy.Internal (foldrChunks, defaultChunkSize)
import Data.ByteString.Unsafe (unsafeTake, unsafeDrop)
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as B8
import Data.Char (ord, isSpace)
import Data.Functor.Constant (Constant(Constant, getConstant))
import Data.Functor.Identity (Identity)
import Data.Profunctor (Profunctor)
import qualified Data.Profunctor
import qualified Data.List as List
import Foreign.C.Error (Errno(Errno), ePIPE)
import qualified GHC.IO.Exception as G
import Pipes
import qualified Pipes.ByteString as PB
import qualified Pipes.Text.Internal as PI
import Pipes.Text.Internal
import Pipes.Core (respond, Server')
import Pipes.Group (concats, intercalates, FreeT(..), FreeF(..))
import qualified Pipes.Group as PG
import qualified Pipes.Parse as PP
import Pipes.Parse (Parser)
import qualified Pipes.Safe.Prelude as Safe
import qualified Pipes.Safe as Safe
import Pipes.Safe (MonadSafe(..), Base(..))
import qualified Pipes.Prelude as P
import qualified System.IO as IO
import Data.Char (isSpace)
import Data.Word (Word8)
import Prelude hiding (
all,
any,
break,
concat,
concatMap,
drop,
dropWhile,
elem,
filter,
head,
last,
lines,
length,
map,
maximum,
minimum,
notElem,
null,
readFile,
span,
splitAt,
take,
takeWhile,
unlines,
unwords,
words,
writeFile )
-- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's
fromLazy :: (Monad m) => TL.Text -> Producer' Text m ()
fromLazy = foldrChunks (\e a -> yield e >> a) (return ())
{-# INLINE fromLazy #-}
-- | Stream text from 'stdin'
stdin :: MonadIO m => Producer Text m ()
stdin = fromHandle IO.stdin
{-# INLINE stdin #-}
{-| Convert a 'IO.Handle' into a text stream using a text size
determined by the good sense of the text library; note that this
is distinctly slower than @decideUtf8 (Pipes.ByteString.fromHandle h)@
but uses the system encoding and has other `Data.Text.IO` features
-}
fromHandle :: MonadIO m => IO.Handle -> Producer Text m ()
fromHandle h = go where
go = do txt <- liftIO (T.hGetChunk h)
unless (T.null txt) ( do yield txt
go )
{-# INLINABLE fromHandle#-}
{-| Stream text from a file in the simple fashion of @Data.Text.IO@
>>> runSafeT $ runEffect $ Text.readFile "hello.hs" >-> Text.map toUpper >-> hoist lift Text.stdout
MAIN = PUTSTRLN "HELLO WORLD"
-}
readFile :: MonadSafe m => FilePath -> Producer Text m ()
readFile file = Safe.withFile file IO.ReadMode fromHandle
{-# INLINE readFile #-}
{-| Stream text to 'stdout'
Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe.
Note: For best performance, it might be best just to use @(for source (liftIO . putStr))@
instead of @(source >-> stdout)@ .
-}
stdout :: MonadIO m => Consumer' Text m ()
stdout = go
where
go = do
txt <- await
x <- liftIO $ try (T.putStr txt)
case x of
Left (G.IOError { G.ioe_type = G.ResourceVanished
, G.ioe_errno = Just ioe })
| Errno ioe == ePIPE
-> return ()
Left e -> liftIO (throwIO e)
Right () -> go
{-# INLINABLE stdout #-}
{-| Convert a text stream into a 'Handle'
Note: again, for best performance, where possible use
@(for source (liftIO . hPutStr handle))@ instead of @(source >-> toHandle handle)@.
-}
toHandle :: MonadIO m => IO.Handle -> Consumer' Text m r
toHandle h = for cat (liftIO . T.hPutStr h)
{-# INLINABLE toHandle #-}
{-# RULES "p >-> toHandle h" forall p h .
p >-> toHandle h = for p (\txt -> liftIO (T.hPutStr h txt))
#-}
-- | Stream text into a file. Uses @pipes-safe@.
writeFile :: (MonadSafe m) => FilePath -> Consumer' Text m ()
writeFile file = Safe.withFile file IO.WriteMode toHandle
{-# INLINE writeFile #-}
type Lens' a b = forall f . Functor f => (b -> f b) -> (a -> f a)
type Iso' a b = forall f p . (Functor f, Profunctor p) => p b (f b) -> p a (f a)
(^.) :: a -> ((b -> Constant b b) -> (a -> Constant b a)) -> b
a ^. lens = getConstant (lens Constant a)
-- | Apply a transformation to each 'Char' in the stream
map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r
map f = P.map (T.map f)
{-# INLINABLE map #-}
{-# RULES "p >-> map f" forall p f .
p >-> map f = for p (\txt -> yield (T.map f txt))
#-}
-- | Map a function over the characters of a text stream and concatenate the results
concatMap
:: (Monad m) => (Char -> Text) -> Pipe Text Text m r
concatMap f = P.map (T.concatMap f)
{-# INLINABLE concatMap #-}
{-# RULES "p >-> concatMap f" forall p f .
p >-> concatMap f = for p (\txt -> yield (T.concatMap f txt))
#-}
-- | Transform a Pipe of 'Text' into a Pipe of 'ByteString's using UTF-8
-- encoding; @encodeUtf8 = Pipes.Prelude.map TE.encodeUtf8@ so more complex
-- encoding pipes can easily be constructed with the functions in @Data.Text.Encoding@
encodeUtf8 :: Monad m => Pipe Text ByteString m r
encodeUtf8 = P.map TE.encodeUtf8
{-# INLINEABLE encodeUtf8 #-}
{-# RULES "p >-> encodeUtf8" forall p .
p >-> encodeUtf8 = for p (\txt -> yield (TE.encodeUtf8 txt))
#-}
-- | Transform a Pipe of 'String's into one of 'Text' chunks
pack :: Monad m => Pipe String Text m r
pack = P.map T.pack
{-# INLINEABLE pack #-}
{-# RULES "p >-> pack" forall p .
p >-> pack = for p (\txt -> yield (T.pack txt))
#-}
-- | Transform a Pipes of 'Text' chunks into one of 'String's
unpack :: Monad m => Pipe Text String m r
unpack = for cat (\t -> yield (T.unpack t))
{-# INLINEABLE unpack #-}
{-# RULES "p >-> unpack" forall p .
p >-> unpack = for p (\txt -> yield (T.unpack txt))
#-}
-- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utilities,
-- here acting as 'Text' pipes, rather as they would on a lazy text
toCaseFold :: Monad m => Pipe Text Text m ()
toCaseFold = P.map T.toCaseFold
{-# INLINEABLE toCaseFold #-}
{-# RULES "p >-> toCaseFold" forall p .
p >-> toCaseFold = for p (\txt -> yield (T.toCaseFold txt))
#-}
-- | lowercase incoming 'Text'
toLower :: Monad m => Pipe Text Text m ()
toLower = P.map T.toLower
{-# INLINEABLE toLower #-}
{-# RULES "p >-> toLower" forall p .
p >-> toLower = for p (\txt -> yield (T.toLower txt))
#-}
-- | uppercase incoming 'Text'
toUpper :: Monad m => Pipe Text Text m ()
toUpper = P.map T.toUpper
{-# INLINEABLE toUpper #-}
{-# RULES "p >-> toUpper" forall p .
p >-> toUpper = for p (\txt -> yield (T.toUpper txt))
#-}
-- | Remove leading white space from an incoming succession of 'Text's
stripStart :: Monad m => Pipe Text Text m r
stripStart = do
chunk <- await
let text = T.stripStart chunk
if T.null text
then stripStart
else do yield text
cat
{-# INLINEABLE stripStart #-}
-- | @(take n)@ only allows @n@ individual characters to pass;
-- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass.
take :: (Monad m, Integral a) => a -> Pipe Text Text m ()
take n0 = go n0 where
go n
| n <= 0 = return ()
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len > n)
then yield (T.take (fromIntegral n) txt)
else do
yield txt
go (n - len)
{-# INLINABLE take #-}
-- | @(drop n)@ drops the first @n@ characters
drop :: (Monad m, Integral a) => a -> Pipe Text Text m r
drop n0 = go n0 where
go n
| n <= 0 = cat
| otherwise = do
txt <- await
let len = fromIntegral (T.length txt)
if (len >= n)
then do
yield (T.drop (fromIntegral n) txt)
cat
else go (n - len)
{-# INLINABLE drop #-}
-- | Take characters until they fail the predicate
takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m ()
takeWhile predicate = go
where
go = do
txt <- await
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go
else yield prefix
{-# INLINABLE takeWhile #-}
-- | Drop characters until they fail the predicate
dropWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
dropWhile predicate = go where
go = do
txt <- await
case T.findIndex (not . predicate) txt of
Nothing -> go
Just i -> do
yield (T.drop i txt)
cat
{-# INLINABLE dropWhile #-}
-- | Only allows 'Char's to pass if they satisfy the predicate
filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r
filter predicate = P.map (T.filter predicate)
{-# INLINABLE filter #-}
{-# RULES "p >-> filter q" forall p q .
p >-> filter q = for p (\txt -> yield (T.filter q txt))
#-}
-- | Strict left scan over the characters
scan
:: (Monad m)
=> (Char -> Char -> Char) -> Char -> Pipe Text Text m r
scan step begin = do
yield (T.singleton begin)
go begin
where
go c = do
txt <- await
let txt' = T.scanl step c txt
c' = T.last txt'
yield (T.tail txt')
go c'
{-# INLINABLE scan #-}
{-| Fold a pure 'Producer' of strict 'Text's into a lazy
'TL.Text'
-}
toLazy :: Producer Text Identity () -> TL.Text
toLazy = TL.fromChunks . P.toList
{-# INLINABLE toLazy #-}
{-| Fold an effectful 'Producer' of strict 'Text's into a lazy
'TL.Text'
Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for
simple testing purposes. Idiomatic @pipes@ style consumes the chunks
immediately as they are generated instead of loading them all into memory.
-}
toLazyM :: (Monad m) => Producer Text m () -> m TL.Text
toLazyM = liftM TL.fromChunks . P.toListM
{-# INLINABLE toLazyM #-}
-- | Reduce the text stream using a strict left fold over characters
foldChars
:: Monad m
=> (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r
foldChars step begin done = P.fold (T.foldl' step) begin done
{-# INLINABLE foldChars #-}
-- | Retrieve the first 'Char'
head :: (Monad m) => Producer Text m () -> m (Maybe Char)
head = go
where
go p = do
x <- nextChar p
case x of
Left _ -> return Nothing
Right (c, _) -> return (Just c)
{-# INLINABLE head #-}
-- | Retrieve the last 'Char'
last :: (Monad m) => Producer Text m () -> m (Maybe Char)
last = go Nothing
where
go r p = do
x <- next p
case x of
Left () -> return r
Right (txt, p') ->
if (T.null txt)
then go r p'
else go (Just $ T.last txt) p'
{-# INLINABLE last #-}
-- | Determine if the stream is empty
null :: (Monad m) => Producer Text m () -> m Bool
null = P.all T.null
{-# INLINABLE null #-}
-- | Count the number of characters in the stream
length :: (Monad m, Num n) => Producer Text m () -> m n
length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id
{-# INLINABLE length #-}
-- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate
any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
any predicate = P.any (T.any predicate)
{-# INLINABLE any #-}
-- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate
all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool
all predicate = P.all (T.all predicate)
{-# INLINABLE all #-}
-- | Return the maximum 'Char' within a text stream
maximum :: (Monad m) => Producer Text m () -> m (Maybe Char)
maximum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else Just $ case mc of
Nothing -> T.maximum txt
Just c -> max c (T.maximum txt)
{-# INLINABLE maximum #-}
-- | Return the minimum 'Char' within a text stream (surely very useful!)
minimum :: (Monad m) => Producer Text m () -> m (Maybe Char)
minimum = P.fold step Nothing id
where
step mc txt =
if (T.null txt)
then mc
else case mc of
Nothing -> Just (T.minimum txt)
Just c -> Just (min c (T.minimum txt))
{-# INLINABLE minimum #-}
-- | Find the first element in the stream that matches the predicate
find
:: (Monad m)
=> (Char -> Bool) -> Producer Text m () -> m (Maybe Char)
find predicate p = head (p >-> filter predicate)
{-# INLINABLE find #-}
-- | Index into a text stream
index
:: (Monad m, Integral a)
=> a-> Producer Text m () -> m (Maybe Char)
index n p = head (p >-> drop n)
{-# INLINABLE index #-}
-- | Store a tally of how many segments match the given 'Text'
count :: (Monad m, Num n) => Text -> Producer Text m () -> m n
count c p = P.fold (+) 0 id (p >-> P.map (fromIntegral . T.count c))
{-# INLINABLE count #-}
{-| Consume the first character from a stream of 'Text'
'next' either fails with a 'Left' if the 'Producer' has no more characters or
succeeds with a 'Right' providing the next character and the remainder of the
'Producer'.
-}
nextChar
:: (Monad m)
=> Producer Text m r
-> m (Either r (Char, Producer Text m r))
nextChar = go
where
go p = do
x <- next p
case x of
Left r -> return (Left r)
Right (txt, p') -> case (T.uncons txt) of
Nothing -> go p'
Just (c, txt') -> return (Right (c, yield txt' >> p'))
{-# INLINABLE nextChar #-}
{-| Draw one 'Char' from a stream of 'Text', returning 'Left' if the
'Producer' is empty
-}
drawChar :: (Monad m) => Parser Text m (Maybe Char)
drawChar = do
x <- PP.draw
case x of
Nothing -> return Nothing
Just txt -> case (T.uncons txt) of
Nothing -> drawChar
Just (c, txt') -> do
PP.unDraw txt'
return (Just c)
{-# INLINABLE drawChar #-}
-- | Push back a 'Char' onto the underlying 'Producer'
unDrawChar :: (Monad m) => Char -> Parser Text m ()
unDrawChar c = modify (yield (T.singleton c) >>)
{-# INLINABLE unDrawChar #-}
{-| 'peekChar' checks the first 'Char' in the stream, but uses 'unDrawChar' to
push the 'Char' back
> peekChar = do
> x <- drawChar
> case x of
> Left _ -> return ()
> Right c -> unDrawChar c
> return x
-}
peekChar :: (Monad m) => Parser Text m (Maybe Char)
peekChar = do
x <- drawChar
case x of
Nothing -> return ()
Just c -> unDrawChar c
return x
{-# INLINABLE peekChar #-}
{-| Check if the underlying 'Producer' has no more characters
Note that this will skip over empty 'Text' chunks, unlike
'PP.isEndOfInput' from @pipes-parse@, which would consider
an empty 'Text' a valid bit of input.
> isEndOfChars = liftM isLeft peekChar
-}
isEndOfChars :: (Monad m) => Parser Text m Bool
isEndOfChars = do
x <- peekChar
return (case x of
Nothing -> True
Just _-> False )
{-# INLINABLE isEndOfChars #-}
{- | An improper lens into a stream of 'ByteString' expected to be UTF-8 encoded; the associated
stream of Text ends by returning a stream of ByteStrings beginning at the point of failure.
-}
decodeUtf8 :: Monad m => Lens' (Producer ByteString m r)
(Producer Text m (Producer ByteString m r))
decodeUtf8 k p0 = fmap (\p -> join (for p (yield . TE.encodeUtf8)))
(k (go B.empty PI.streamDecodeUtf8 p0)) where
go !carry dec0 p = do
x <- lift (next p)
case x of Left r -> return (if B.null carry
then return r -- all bytestring input was consumed
else (do yield carry -- a potentially valid fragment remains
return r))
Right (chunk, p') -> case dec0 chunk of
PI.Some text carry2 dec -> do yield text
go carry2 dec p'
PI.Other text bs -> do yield text
return (do yield bs -- an invalid blob remains
p')
{-# INLINABLE decodeUtf8 #-}
-- | Splits a 'Producer' after the given number of characters
splitAt
:: (Monad m, Integral n)
=> n
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
splitAt n0 k p0 = fmap join (k (go n0 p0))
where
go 0 p = return p
go n p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let len = fromIntegral (T.length txt)
if (len <= n)
then do
yield txt
go (n - len) p'
else do
let (prefix, suffix) = T.splitAt (fromIntegral n) txt
yield prefix
return (yield suffix >> p')
{-# INLINABLE splitAt #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of text that satisfy the predicate
-}
span
:: (Monad m)
=> (Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
span predicate k p0 = fmap join (k (go p0))
where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> do
let (prefix, suffix) = T.span predicate txt
if (T.null suffix)
then do
yield txt
go p'
else do
yield prefix
return (yield suffix >> p')
{-# INLINABLE span #-}
{-| Split a text stream in two, where the first text stream is the longest
consecutive group of characters that don't satisfy the predicate
-}
break
:: (Monad m)
=> (Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
break predicate = span (not . predicate)
{-# INLINABLE break #-}
{-| Improper lens that splits after the first group of equivalent Chars, as
defined by the given equivalence relation
-}
groupBy
:: (Monad m)
=> (Char -> Char -> Bool)
-> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
groupBy equals k p0 = fmap join (k ((go p0))) where
go p = do
x <- lift (next p)
case x of
Left r -> return (return r)
Right (txt, p') -> case T.uncons txt of
Nothing -> go p'
Just (c, _) -> (yield txt >> p') ^. span (equals c)
{-# INLINABLE groupBy #-}
-- | Improper lens that splits after the first succession of identical 'Char' s
group :: Monad m
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
group = groupBy (==)
{-# INLINABLE group #-}
{-| Improper lens that splits a 'Producer' after the first word
Unlike 'words', this does not drop leading whitespace
-}
word :: (Monad m)
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
word k p0 = fmap join (k (to p0))
where
to p = do
p' <- p^.span isSpace
p'^.break isSpace
{-# INLINABLE word #-}
line :: (Monad m)
=> Lens' (Producer Text m r)
(Producer Text m (Producer Text m r))
line = break (== '\n')
{-# INLINABLE line #-}
-- | Intersperse a 'Char' in between the characters of stream of 'Text'
intersperse
:: (Monad m) => Char -> Producer Text m r -> Producer Text m r
intersperse c = go0
where
go0 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.intersperse c txt)
go1 p'
go1 p = do
x <- lift (next p)
case x of
Left r -> return r
Right (txt, p') -> do
yield (T.singleton c)
yield (T.intersperse c txt)
go1 p'
{-# INLINABLE intersperse #-}
-- | Improper isomorphism between a 'Producer' of 'ByteString's and 'Word8's
packChars :: Monad m => Iso' (Producer Char m x) (Producer Text m x)
packChars = Data.Profunctor.dimap to (fmap from)
where
-- to :: Monad m => Producer Char m x -> Producer Text m x
to p = PG.folds step id done (p^.PG.chunksOf defaultChunkSize)
step diffAs c = diffAs . (c:)
done diffAs = T.pack (diffAs [])
-- from :: Monad m => Producer Text m x -> Producer Char m x
from p = for p (each . T.unpack)
{-# INLINABLE packChars #-}
-- | Split a text stream into 'FreeT'-delimited text streams of fixed size
chunksOf
:: (Monad m, Integral n)
=> n -> Lens' (Producer Text m r)
(FreeT (Producer Text m) m r)
chunksOf n k p0 = fmap concats (k (FreeT (go p0)))
where
go p = do
x <- next p
return $ case x of
Left r -> Pure r
Right (txt, p') -> Free $ do
p'' <- (yield txt >> p') ^. splitAt n
return $ FreeT (go p'')
{-# INLINABLE chunksOf #-}
{-| Split a text stream into sub-streams delimited by characters that satisfy the
predicate
-}
splitsWith
:: (Monad m)
=> (Char -> Bool)
-> Producer Text m r
-> FreeT (Producer Text m) m r
splitsWith predicate p0 = FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ Free $ do
p'' <- (yield txt >> p') ^. span (not . predicate)
return $ FreeT (go1 p'')
go1 p = do
x <- nextChar p
return $ case x of
Left r -> Pure r
Right (_, p') -> Free $ do
p'' <- p' ^. span (not . predicate)
return $ FreeT (go1 p'')
{-# INLINABLE splitsWith #-}
-- | Split a text stream using the given 'Char' as the delimiter
splits :: (Monad m)
=> Char
-> Lens' (Producer Text m r)
(FreeT (Producer Text m) m r)
splits c k p =
fmap (PG.intercalates (yield (T.singleton c))) (k (splitsWith (c ==) p))
{-# INLINABLE splits #-}
{-| Isomorphism between a stream of 'Text' and groups of equivalent 'Char's , using the
given equivalence relation
-}
groupsBy
:: Monad m
=> (Char -> Char -> Bool)
-> Lens' (Producer Text m x) (FreeT (Producer Text m) m x)
groupsBy equals k p0 = fmap concats (k (FreeT (go p0))) where
go p = do x <- next p
case x of Left r -> return (Pure r)
Right (bs, p') -> case T.uncons bs of
Nothing -> go p'
Just (c, _) -> do return $ Free $ do
p'' <- (yield bs >> p')^.span (equals c)
return $ FreeT (go p'')
{-# INLINABLE groupsBy #-}
-- | Like 'groupsBy', where the equality predicate is ('==')
groups
:: Monad m
=> Lens' (Producer Text m x) (FreeT (Producer Text m) m x)
groups = groupsBy (==)
{-# INLINABLE groups #-}
{-| Split a text stream into 'FreeT'-delimited lines
-}
lines
:: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r)
lines = Data.Profunctor.dimap _lines (fmap _unlines)
where
_lines p0 = FreeT (go0 p0)
where
go0 p = do
x <- next p
case x of
Left r -> return (Pure r)
Right (txt, p') ->
if (T.null txt)
then go0 p'
else return $ Free $ go1 (yield txt >> p')
go1 p = do
p' <- p ^. break ('\n' ==)
return $ FreeT $ do
x <- nextChar p'
case x of
Left r -> return $ Pure r
Right (_, p'') -> go0 p''
-- _unlines
-- :: Monad m
-- => FreeT (Producer Text m) m x -> Producer Text m x
_unlines = concats . PG.maps (<* yield (T.singleton '\n'))
{-# INLINABLE lines #-}
-- | Split a text stream into 'FreeT'-delimited words
words
:: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r)
words = Data.Profunctor.dimap go (fmap _unwords)
where
go p = FreeT $ do
x <- next (p >-> dropWhile isSpace)
return $ case x of
Left r -> Pure r
Right (bs, p') -> Free $ do
p'' <- (yield bs >> p') ^. break isSpace
return (go p'')
_unwords = PG.intercalates (yield $ T.singleton ' ')
{-# INLINABLE words #-}
{-| 'intercalate' concatenates the 'FreeT'-delimited text streams after
interspersing a text stream in between them
-}
intercalate
:: (Monad m)
=> Producer Text m ()
-> FreeT (Producer Text m) m r
-> Producer Text m r
intercalate p0 = go0
where
go0 f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
f' <- p
go1 f'
go1 f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
p0
f' <- p
go1 f'
{-# INLINABLE intercalate #-}
{-| Join 'FreeT'-delimited lines into a text stream
-}
unlines
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unlines = go
where
go f = do
x <- lift (runFreeT f)
case x of
Pure r -> return r
Free p -> do
f' <- p
yield $ T.singleton '\n'
go f'
{-# INLINABLE unlines #-}
{-| Join 'FreeT'-delimited words into a text stream
-}
unwords
:: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r
unwords = intercalate (yield $ T.singleton ' ')
{-# INLINABLE unwords #-}
{- $parse
The following parsing utilities are single-character analogs of the ones found
@pipes-parse@.
-}
{- $reexports
@Data.Text@ re-exports the 'Text' type.
@Pipes.Parse@ re-exports 'input', 'concat', 'FreeT' (the type) and the 'Parse' synonym.
-}
{- | Use a 'Codec' as a pipes-style 'Lens' into a byte stream; the available 'Codec' s are
'utf8', 'utf16_le', 'utf16_be', 'utf32_le', 'utf32_be' . The 'Codec' concept and the
individual 'Codec' definitions follow the enumerator and conduit libraries.
Utf8 is handled differently in this library -- without the use of 'unsafePerformIO' &co
to catch 'Text' exceptions; but the same 'mypipe ^. codec utf8' interface can be used.
'mypipe ^. decodeUtf8' should be the same, but has a somewhat more direct and thus perhaps
better implementation.
-}
codec :: Monad m => Codec -> Lens' (Producer ByteString m r) (Producer Text m (Producer ByteString m r))
codec (Codec _ enc dec) k p0 = fmap (\p -> join (for p (yield . fst . enc)))
(k (decoder (dec B.empty) p0) ) where
decoder :: Monad m => PI.Decoding -> Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decoder !d p0 = case d of
PI.Other txt bad -> do yield txt
return (do yield bad
p0)
PI.Some txt extra dec -> do yield txt
x <- lift (next p0)
case x of Left r -> return (do yield extra
return r)
Right (chunk,p1) -> decoder (dec chunk) p1
{- | ascii and latin encodings only represent a small fragment of 'Text'; thus we cannot
use the pipes 'Lens' style to work with them. Rather we simply define functions
each way.
'encodeAscii' : Reduce as much of your stream of 'Text' actually is ascii to a byte stream,
returning the rest of the 'Text' at the first non-ascii 'Char'
-}
encodeAscii :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r)
encodeAscii = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if T.null chunk
then go p'
else let (safe, unsafe) = T.span (\c -> ord c <= 0x7F) chunk
in do yield (B8.pack (T.unpack safe))
if T.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce as much of your stream of 'Text' actually is iso8859 or latin1 to a byte stream,
returning the rest of the 'Text' upon hitting any non-latin 'Char'
-}
encodeIso8859_1 :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r)
encodeIso8859_1 = go where
go p = do etxt <- lift (next p)
case etxt of
Left r -> return (return r)
Right (txt, p') ->
if T.null txt
then go p'
else let (safe, unsafe) = T.span (\c -> ord c <= 0xFF) txt
in do yield (B8.pack (T.unpack safe))
if T.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce a byte stream to a corresponding stream of ascii chars, returning the
unused 'ByteString' upon hitting an un-ascii byte.
-}
decodeAscii :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeAscii = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if B.null chunk
then go p'
else let (safe, unsafe) = B.span (<= 0x7F) chunk
in do yield (T.pack (B8.unpack safe))
if B.null unsafe
then go p'
else return $ do yield unsafe
p'
{- | Reduce a byte stream to a corresponding stream of ascii chars, returning the
unused 'ByteString' upon hitting the rare un-latinizable byte.
-}
decodeIso8859_1 :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r)
decodeIso8859_1 = go where
go p = do echunk <- lift (next p)
case echunk of
Left r -> return (return r)
Right (chunk, p') ->
if B.null chunk
then go p'
else let (safe, unsafe) = B.span (<= 0xFF) chunk
in do yield (T.pack (B8.unpack safe))
if B.null unsafe
then go p'
else return $ do yield unsafe
p'