aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/ulikunitz/xz/lzma/hashtable.go
blob: d786a9745d4e39b5ebb6e67b77bb50275292eccc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package lzma

import (
	"errors"
	"fmt"

	"github.com/ulikunitz/xz/internal/hash"
)

/* For compression we need to find byte sequences that match the byte
 * sequence at the dictionary head. A hash table is a simple method to
 * provide this capability.
 */

// maxMatches limits the number of matches requested from the Matches
// function. This controls the speed of the overall encoding.
const maxMatches = 16

// shortDists defines the number of short distances supported by the
// implementation.
const shortDists = 8

// The minimum is somehow arbitrary but the maximum is limited by the
// memory requirements of the hash table.
const (
	minTableExponent = 9
	maxTableExponent = 20
)

// newRoller contains the function used to create an instance of the
// hash.Roller.
var newRoller = func(n int) hash.Roller { return hash.NewCyclicPoly(n) }

// hashTable stores the hash table including the rolling hash method.
//
// We implement chained hashing into a circular buffer. Each entry in
// the circular buffer stores the delta distance to the next position with a
// word that has the same hash value.
type hashTable struct {
	dict *encoderDict
	// actual hash table
	t []int64
	// circular list data with the offset to the next word
	data  []uint32
	front int
	// mask for computing the index for the hash table
	mask uint64
	// hash offset; initial value is -int64(wordLen)
	hoff int64
	// length of the hashed word
	wordLen int
	// hash roller for computing the hash values for the Write
	// method
	wr hash.Roller
	// hash roller for computing arbitrary hashes
	hr hash.Roller
	// preallocated slices
	p         [maxMatches]int64
	distances [maxMatches + shortDists]int
}

// hashTableExponent derives the hash table exponent from the dictionary
// capacity.
func hashTableExponent(n uint32) int {
	e := 30 - nlz32(n)
	switch {
	case e < minTableExponent:
		e = minTableExponent
	case e > maxTableExponent:
		e = maxTableExponent
	}
	return e
}

// newHashTable creates a new hash table for words of length wordLen
func newHashTable(capacity int, wordLen int) (t *hashTable, err error) {
	if !(0 < capacity) {
		return nil, errors.New(
			"newHashTable: capacity must not be negative")
	}
	exp := hashTableExponent(uint32(capacity))
	if !(1 <= wordLen && wordLen <= 4) {
		return nil, errors.New("newHashTable: " +
			"argument wordLen out of range")
	}
	n := 1 << uint(exp)
	if n <= 0 {
		panic("newHashTable: exponent is too large")
	}
	t = &hashTable{
		t:       make([]int64, n),
		data:    make([]uint32, capacity),
		mask:    (uint64(1) << uint(exp)) - 1,
		hoff:    -int64(wordLen),
		wordLen: wordLen,
		wr:      newRoller(wordLen),
		hr:      newRoller(wordLen),
	}
	return t, nil
}

func (t *hashTable) SetDict(d *encoderDict) { t.dict = d }

// buffered returns the number of bytes that are currently hashed.
func (t *hashTable) buffered() int {
	n := t.hoff + 1
	switch {
	case n <= 0:
		return 0
	case n >= int64(len(t.data)):
		return len(t.data)
	}
	return int(n)
}

// addIndex adds n to an index ensuring that is stays inside the
// circular buffer for the hash chain.
func (t *hashTable) addIndex(i, n int) int {
	i += n - len(t.data)
	if i < 0 {
		i += len(t.data)
	}
	return i
}

// putDelta puts the delta instance at the current front of the circular
// chain buffer.
func (t *hashTable) putDelta(delta uint32) {
	t.data[t.front] = delta
	t.front = t.addIndex(t.front, 1)
}

// putEntry puts a new entry into the hash table. If there is already a
// value stored it is moved into the circular chain buffer.
func (t *hashTable) putEntry(h uint64, pos int64) {
	if pos < 0 {
		return
	}
	i := h & t.mask
	old := t.t[i] - 1
	t.t[i] = pos + 1
	var delta int64
	if old >= 0 {
		delta = pos - old
		if delta > 1<<32-1 || delta > int64(t.buffered()) {
			delta = 0
		}
	}
	t.putDelta(uint32(delta))
}

// WriteByte converts a single byte into a hash and puts them into the hash
// table.
func (t *hashTable) WriteByte(b byte) error {
	h := t.wr.RollByte(b)
	t.hoff++
	t.putEntry(h, t.hoff)
	return nil
}

// Write converts the bytes provided into hash tables and stores the
// abbreviated offsets into the hash table. The method will never return an
// error.
func (t *hashTable) Write(p []byte) (n int, err error) {
	for _, b := range p {
		// WriteByte doesn't generate an error.
		t.WriteByte(b)
	}
	return len(p), nil
}

// getMatches the matches for a specific hash. The functions returns the
// number of positions found.
//
// TODO: Make a getDistances because that we are actually interested in.
func (t *hashTable) getMatches(h uint64, positions []int64) (n int) {
	if t.hoff < 0 || len(positions) == 0 {
		return 0
	}
	buffered := t.buffered()
	tailPos := t.hoff + 1 - int64(buffered)
	rear := t.front - buffered
	if rear >= 0 {
		rear -= len(t.data)
	}
	// get the slot for the hash
	pos := t.t[h&t.mask] - 1
	delta := pos - tailPos
	for {
		if delta < 0 {
			return n
		}
		positions[n] = tailPos + delta
		n++
		if n >= len(positions) {
			return n
		}
		i := rear + int(delta)
		if i < 0 {
			i += len(t.data)
		}
		u := t.data[i]
		if u == 0 {
			return n
		}
		delta -= int64(u)
	}
}

// hash computes the rolling hash for the word stored in p. For correct
// results its length must be equal to t.wordLen.
func (t *hashTable) hash(p []byte) uint64 {
	var h uint64
	for _, b := range p {
		h = t.hr.RollByte(b)
	}
	return h
}

// Matches fills the positions slice with potential matches. The
// functions returns the number of positions filled into positions. The
// byte slice p must have word length of the hash table.
func (t *hashTable) Matches(p []byte, positions []int64) int {
	if len(p) != t.wordLen {
		panic(fmt.Errorf(
			"byte slice must have length %d", t.wordLen))
	}
	h := t.hash(p)
	return t.getMatches(h, positions)
}

// NextOp identifies the next operation using the hash table.
//
// TODO: Use all repetitions to find matches.
func (t *hashTable) NextOp(rep [4]uint32) operation {
	// get positions
	data := t.dict.data[:maxMatchLen]
	n, _ := t.dict.buf.Peek(data)
	data = data[:n]
	var p []int64
	if n < t.wordLen {
		p = t.p[:0]
	} else {
		p = t.p[:maxMatches]
		n = t.Matches(data[:t.wordLen], p)
		p = p[:n]
	}

	// convert positions in potential distances
	head := t.dict.head
	dists := append(t.distances[:0], 1, 2, 3, 4, 5, 6, 7, 8)
	for _, pos := range p {
		dis := int(head - pos)
		if dis > shortDists {
			dists = append(dists, dis)
		}
	}

	// check distances
	var m match
	dictLen := t.dict.DictLen()
	for _, dist := range dists {
		if dist > dictLen {
			continue
		}

		// Here comes a trick. We are only interested in matches
		// that are longer than the matches we have been found
		// before. So before we test the whole byte sequence at
		// the given distance, we test the first byte that would
		// make the match longer. If it doesn't match the byte
		// to match, we don't to care any longer.
		i := t.dict.buf.rear - dist + m.n
		if i < 0 {
			i += len(t.dict.buf.data)
		}
		if t.dict.buf.data[i] != data[m.n] {
			// We can't get a longer match. Jump to the next
			// distance.
			continue
		}

		n := t.dict.buf.matchLen(dist, data)
		switch n {
		case 0:
			continue
		case 1:
			if uint32(dist-minDistance) != rep[0] {
				continue
			}
		}
		if n > m.n {
			m = match{int64(dist), n}
			if n == len(data) {
				// No better match will be found.
				break
			}
		}
	}

	if m.n == 0 {
		return lit{data[0]}
	}
	return m
}