aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/ulikunitz/xz/lzma/encoder.go
blob: 18ce0099282961f4b45728a1add3e38df6fd8844 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// Copyright 2014-2017 Ulrich Kunitz. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package lzma

import (
	"fmt"
	"io"
)

// opLenMargin provides the upper limit of the number of bytes required
// to encode a single operation.
const opLenMargin = 10

// compressFlags control the compression process.
type compressFlags uint32

// Values for compressFlags.
const (
	// all data should be compressed, even if compression is not
	// optimal.
	all compressFlags = 1 << iota
)

// encoderFlags provide the flags for an encoder.
type encoderFlags uint32

// Flags for the encoder.
const (
	// eosMarker requests an EOS marker to be written.
	eosMarker encoderFlags = 1 << iota
)

// Encoder compresses data buffered in the encoder dictionary and writes
// it into a byte writer.
type encoder struct {
	dict  *encoderDict
	state *state
	re    *rangeEncoder
	start int64
	// generate eos marker
	marker bool
	limit  bool
	margin int
}

// newEncoder creates a new encoder. If the byte writer must be
// limited use LimitedByteWriter provided by this package. The flags
// argument supports the eosMarker flag, controlling whether a
// terminating end-of-stream marker must be written.
func newEncoder(bw io.ByteWriter, state *state, dict *encoderDict,
	flags encoderFlags) (e *encoder, err error) {

	re, err := newRangeEncoder(bw)
	if err != nil {
		return nil, err
	}
	e = &encoder{
		dict:   dict,
		state:  state,
		re:     re,
		marker: flags&eosMarker != 0,
		start:  dict.Pos(),
		margin: opLenMargin,
	}
	if e.marker {
		e.margin += 5
	}
	return e, nil
}

// Write writes the bytes from p into the dictionary. If not enough
// space is available the data in the dictionary buffer will be
// compressed to make additional space available. If the limit of the
// underlying writer has been reached ErrLimit will be returned.
func (e *encoder) Write(p []byte) (n int, err error) {
	for {
		k, err := e.dict.Write(p[n:])
		n += k
		if err == ErrNoSpace {
			if err = e.compress(0); err != nil {
				return n, err
			}
			continue
		}
		return n, err
	}
}

// Reopen reopens the encoder with a new byte writer.
func (e *encoder) Reopen(bw io.ByteWriter) error {
	var err error
	if e.re, err = newRangeEncoder(bw); err != nil {
		return err
	}
	e.start = e.dict.Pos()
	e.limit = false
	return nil
}

// writeLiteral writes a literal into the LZMA stream
func (e *encoder) writeLiteral(l lit) error {
	var err error
	state, state2, _ := e.state.states(e.dict.Pos())
	if err = e.state.isMatch[state2].Encode(e.re, 0); err != nil {
		return err
	}
	litState := e.state.litState(e.dict.ByteAt(1), e.dict.Pos())
	match := e.dict.ByteAt(int(e.state.rep[0]) + 1)
	err = e.state.litCodec.Encode(e.re, l.b, state, match, litState)
	if err != nil {
		return err
	}
	e.state.updateStateLiteral()
	return nil
}

// iverson implements the Iverson operator as proposed by Donald Knuth in his
// book Concrete Mathematics.
func iverson(ok bool) uint32 {
	if ok {
		return 1
	}
	return 0
}

// writeMatch writes a repetition operation into the operation stream
func (e *encoder) writeMatch(m match) error {
	var err error
	if !(minDistance <= m.distance && m.distance <= maxDistance) {
		panic(fmt.Errorf("match distance %d out of range", m.distance))
	}
	dist := uint32(m.distance - minDistance)
	if !(minMatchLen <= m.n && m.n <= maxMatchLen) &&
		!(dist == e.state.rep[0] && m.n == 1) {
		panic(fmt.Errorf(
			"match length %d out of range; dist %d rep[0] %d",
			m.n, dist, e.state.rep[0]))
	}
	state, state2, posState := e.state.states(e.dict.Pos())
	if err = e.state.isMatch[state2].Encode(e.re, 1); err != nil {
		return err
	}
	g := 0
	for ; g < 4; g++ {
		if e.state.rep[g] == dist {
			break
		}
	}
	b := iverson(g < 4)
	if err = e.state.isRep[state].Encode(e.re, b); err != nil {
		return err
	}
	n := uint32(m.n - minMatchLen)
	if b == 0 {
		// simple match
		e.state.rep[3], e.state.rep[2], e.state.rep[1], e.state.rep[0] =
			e.state.rep[2], e.state.rep[1], e.state.rep[0], dist
		e.state.updateStateMatch()
		if err = e.state.lenCodec.Encode(e.re, n, posState); err != nil {
			return err
		}
		return e.state.distCodec.Encode(e.re, dist, n)
	}
	b = iverson(g != 0)
	if err = e.state.isRepG0[state].Encode(e.re, b); err != nil {
		return err
	}
	if b == 0 {
		// g == 0
		b = iverson(m.n != 1)
		if err = e.state.isRepG0Long[state2].Encode(e.re, b); err != nil {
			return err
		}
		if b == 0 {
			e.state.updateStateShortRep()
			return nil
		}
	} else {
		// g in {1,2,3}
		b = iverson(g != 1)
		if err = e.state.isRepG1[state].Encode(e.re, b); err != nil {
			return err
		}
		if b == 1 {
			// g in {2,3}
			b = iverson(g != 2)
			err = e.state.isRepG2[state].Encode(e.re, b)
			if err != nil {
				return err
			}
			if b == 1 {
				e.state.rep[3] = e.state.rep[2]
			}
			e.state.rep[2] = e.state.rep[1]
		}
		e.state.rep[1] = e.state.rep[0]
		e.state.rep[0] = dist
	}
	e.state.updateStateRep()
	return e.state.repLenCodec.Encode(e.re, n, posState)
}

// writeOp writes a single operation to the range encoder. The function
// checks whether there is enough space available to close the LZMA
// stream.
func (e *encoder) writeOp(op operation) error {
	if e.re.Available() < int64(e.margin) {
		return ErrLimit
	}
	switch x := op.(type) {
	case lit:
		return e.writeLiteral(x)
	case match:
		return e.writeMatch(x)
	default:
		panic("unexpected operation")
	}
}

// compress compressed data from the dictionary buffer. If the flag all
// is set, all data in the dictionary buffer will be compressed. The
// function returns ErrLimit if the underlying writer has reached its
// limit.
func (e *encoder) compress(flags compressFlags) error {
	n := 0
	if flags&all == 0 {
		n = maxMatchLen - 1
	}
	d := e.dict
	m := d.m
	for d.Buffered() > n {
		op := m.NextOp(e.state.rep)
		if err := e.writeOp(op); err != nil {
			return err
		}
		d.Discard(op.Len())
	}
	return nil
}

// eosMatch is a pseudo operation that indicates the end of the stream.
var eosMatch = match{distance: maxDistance, n: minMatchLen}

// Close terminates the LZMA stream. If requested the end-of-stream
// marker will be written. If the byte writer limit has been or will be
// reached during compression of the remaining data in the buffer the
// LZMA stream will be closed and data will remain in the buffer.
func (e *encoder) Close() error {
	err := e.compress(all)
	if err != nil && err != ErrLimit {
		return err
	}
	if e.marker {
		if err := e.writeMatch(eosMatch); err != nil {
			return err
		}
	}
	err = e.re.Close()
	return err
}

// Compressed returns the number bytes of the input data that been
// compressed.
func (e *encoder) Compressed() int64 {
	return e.dict.Pos() - e.start
}