aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/google/go-cmp/cmp/compare.go
blob: 7e215f2202965996deba8605f541aafffcf34237 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.

// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
//
// The primary features of cmp are:
//
// • When the default behavior of equality does not suit the needs of the test,
// custom equality functions can override the equality operation.
// For example, an equality function may report floats as equal so long as they
// are within some tolerance of each other.
//
// • Types that have an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation for the types
// that they define.
//
// • If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared
// using the AllowUnexported option.
package cmp

import (
	"fmt"
	"reflect"

	"github.com/google/go-cmp/cmp/internal/diff"
	"github.com/google/go-cmp/cmp/internal/function"
	"github.com/google/go-cmp/cmp/internal/value"
)

// BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to
// the reflection package's inability to retrieve such entries. Equal will panic
// anytime it comes across a NaN key, but this behavior may change.
//
// See https://golang.org/issue/11104 for more details.

var nothing = reflect.Value{}

// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • If two values are not of the same type, then they are never equal
// and the overall result is false.
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is greater than one,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform the current
// values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil.
// Otherwise, no such method exists and evaluation proceeds to the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
// Pointers are equal if the underlying values they point to are also equal.
// Interfaces are equal if their underlying concrete values are also equal.
//
// Structs are equal if all of their fields are equal. If a struct contains
// unexported fields, Equal panics unless the AllowUnexported option is used or
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
//
// Arrays, slices, and maps are equal if they are both nil or both non-nil
// with the same length and the elements at each index or key are equal.
// Note that a non-nil empty slice and a nil slice are not equal.
// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
func Equal(x, y interface{}, opts ...Option) bool {
	s := newState(opts)
	s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
	return s.result.Equal()
}

// Diff returns a human-readable report of the differences between two values.
// It returns an empty string if and only if Equal returns true for the same
// input values and options. The output string will use the "-" symbol to
// indicate elements removed from x, and the "+" symbol to indicate elements
// added to y.
//
// Do not depend on this output being stable.
func Diff(x, y interface{}, opts ...Option) string {
	r := new(defaultReporter)
	opts = Options{Options(opts), r}
	eq := Equal(x, y, opts...)
	d := r.String()
	if (d == "") != eq {
		panic("inconsistent difference and equality results")
	}
	return d
}

type state struct {
	// These fields represent the "comparison state".
	// Calling statelessCompare must not result in observable changes to these.
	result   diff.Result // The current result of comparison
	curPath  Path        // The current path in the value tree
	reporter reporter    // Optional reporter used for difference formatting

	// dynChecker triggers pseudo-random checks for option correctness.
	// It is safe for statelessCompare to mutate this value.
	dynChecker dynChecker

	// These fields, once set by processOption, will not change.
	exporters map[reflect.Type]bool // Set of structs with unexported field visibility
	opts      Options               // List of all fundamental and filter options
}

func newState(opts []Option) *state {
	s := new(state)
	for _, opt := range opts {
		s.processOption(opt)
	}
	return s
}

func (s *state) processOption(opt Option) {
	switch opt := opt.(type) {
	case nil:
	case Options:
		for _, o := range opt {
			s.processOption(o)
		}
	case coreOption:
		type filtered interface {
			isFiltered() bool
		}
		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
		}
		s.opts = append(s.opts, opt)
	case visibleStructs:
		if s.exporters == nil {
			s.exporters = make(map[reflect.Type]bool)
		}
		for t := range opt {
			s.exporters[t] = true
		}
	case reporter:
		if s.reporter != nil {
			panic("difference reporter already registered")
		}
		s.reporter = opt
	default:
		panic(fmt.Sprintf("unknown option %T", opt))
	}
}

// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
	// We do not save and restore the curPath because all of the compareX
	// methods should properly push and pop from the path.
	// It is an implementation bug if the contents of curPath differs from
	// when calling this function to when returning from it.

	oldResult, oldReporter := s.result, s.reporter
	s.result = diff.Result{} // Reset result
	s.reporter = nil         // Remove reporter to avoid spurious printouts
	s.compareAny(vx, vy)
	res := s.result
	s.result, s.reporter = oldResult, oldReporter
	return res
}

func (s *state) compareAny(vx, vy reflect.Value) {
	// TODO: Support cyclic data structures.

	// Rule 0: Differing types are never equal.
	if !vx.IsValid() || !vy.IsValid() {
		s.report(vx.IsValid() == vy.IsValid(), vx, vy)
		return
	}
	if vx.Type() != vy.Type() {
		s.report(false, vx, vy) // Possible for path to be empty
		return
	}
	t := vx.Type()
	if len(s.curPath) == 0 {
		s.curPath.push(&pathStep{typ: t})
		defer s.curPath.pop()
	}
	vx, vy = s.tryExporting(vx, vy)

	// Rule 1: Check whether an option applies on this node in the value tree.
	if s.tryOptions(vx, vy, t) {
		return
	}

	// Rule 2: Check whether the type has a valid Equal method.
	if s.tryMethod(vx, vy, t) {
		return
	}

	// Rule 3: Recursively descend into each value's underlying kind.
	switch t.Kind() {
	case reflect.Bool:
		s.report(vx.Bool() == vy.Bool(), vx, vy)
		return
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		s.report(vx.Int() == vy.Int(), vx, vy)
		return
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		s.report(vx.Uint() == vy.Uint(), vx, vy)
		return
	case reflect.Float32, reflect.Float64:
		s.report(vx.Float() == vy.Float(), vx, vy)
		return
	case reflect.Complex64, reflect.Complex128:
		s.report(vx.Complex() == vy.Complex(), vx, vy)
		return
	case reflect.String:
		s.report(vx.String() == vy.String(), vx, vy)
		return
	case reflect.Chan, reflect.UnsafePointer:
		s.report(vx.Pointer() == vy.Pointer(), vx, vy)
		return
	case reflect.Func:
		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
		return
	case reflect.Ptr:
		if vx.IsNil() || vy.IsNil() {
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
			return
		}
		s.curPath.push(&indirect{pathStep{t.Elem()}})
		defer s.curPath.pop()
		s.compareAny(vx.Elem(), vy.Elem())
		return
	case reflect.Interface:
		if vx.IsNil() || vy.IsNil() {
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
			return
		}
		if vx.Elem().Type() != vy.Elem().Type() {
			s.report(false, vx.Elem(), vy.Elem())
			return
		}
		s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
		defer s.curPath.pop()
		s.compareAny(vx.Elem(), vy.Elem())
		return
	case reflect.Slice:
		if vx.IsNil() || vy.IsNil() {
			s.report(vx.IsNil() && vy.IsNil(), vx, vy)
			return
		}
		fallthrough
	case reflect.Array:
		s.compareArray(vx, vy, t)
		return
	case reflect.Map:
		s.compareMap(vx, vy, t)
		return
	case reflect.Struct:
		s.compareStruct(vx, vy, t)
		return
	default:
		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
	}
}

func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
	if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
		if sf.force {
			// Use unsafe pointer arithmetic to get read-write access to an
			// unexported field in the struct.
			vx = unsafeRetrieveField(sf.pvx, sf.field)
			vy = unsafeRetrieveField(sf.pvy, sf.field)
		} else {
			// We are not allowed to export the value, so invalidate them
			// so that tryOptions can panic later if not explicitly ignored.
			vx = nothing
			vy = nothing
		}
	}
	return vx, vy
}

func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
	// If there were no FilterValues, we will not detect invalid inputs,
	// so manually check for them and append invalid if necessary.
	// We still evaluate the options since an ignore can override invalid.
	opts := s.opts
	if !vx.IsValid() || !vy.IsValid() {
		opts = Options{opts, invalid{}}
	}

	// Evaluate all filters and apply the remaining options.
	if opt := opts.filter(s, vx, vy, t); opt != nil {
		opt.apply(s, vx, vy)
		return true
	}
	return false
}

func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
	// Check if this type even has an Equal method.
	m, ok := t.MethodByName("Equal")
	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
		return false
	}

	eq := s.callTTBFunc(m.Func, vx, vy)
	s.report(eq, vx, vy)
	return true
}

func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
	v = sanitizeValue(v, f.Type().In(0))
	if !s.dynChecker.Next() {
		return f.Call([]reflect.Value{v})[0]
	}

	// Run the function twice and ensure that we get the same results back.
	// We run in goroutines so that the race detector (if enabled) can detect
	// unsafe mutations to the input.
	c := make(chan reflect.Value)
	go detectRaces(c, f, v)
	want := f.Call([]reflect.Value{v})[0]
	if got := <-c; !s.statelessCompare(got, want).Equal() {
		// To avoid false-positives with non-reflexive equality operations,
		// we sanity check whether a value is equal to itself.
		if !s.statelessCompare(want, want).Equal() {
			return want
		}
		fn := getFuncName(f.Pointer())
		panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
	}
	return want
}

func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
	x = sanitizeValue(x, f.Type().In(0))
	y = sanitizeValue(y, f.Type().In(1))
	if !s.dynChecker.Next() {
		return f.Call([]reflect.Value{x, y})[0].Bool()
	}

	// Swapping the input arguments is sufficient to check that
	// f is symmetric and deterministic.
	// We run in goroutines so that the race detector (if enabled) can detect
	// unsafe mutations to the input.
	c := make(chan reflect.Value)
	go detectRaces(c, f, y, x)
	want := f.Call([]reflect.Value{x, y})[0].Bool()
	if got := <-c; !got.IsValid() || got.Bool() != want {
		fn := getFuncName(f.Pointer())
		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
	}
	return want
}

func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
	var ret reflect.Value
	defer func() {
		recover() // Ignore panics, let the other call to f panic instead
		c <- ret
	}()
	ret = f.Call(vs)[0]
}

// sanitizeValue converts nil interfaces of type T to those of type R,
// assuming that T is assignable to R.
// Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
	// TODO(dsnet): Remove this hacky workaround.
	// See https://golang.org/issue/22143
	if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
		return reflect.New(t).Elem()
	}
	return v
}

func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
	step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
	s.curPath.push(step)

	// Compute an edit-script for slices vx and vy.
	es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
		step.xkey, step.ykey = ix, iy
		return s.statelessCompare(vx.Index(ix), vy.Index(iy))
	})

	// Report the entire slice as is if the arrays are of primitive kind,
	// and the arrays are different enough.
	isPrimitive := false
	switch t.Elem().Kind() {
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
		reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
		isPrimitive = true
	}
	if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 {
		s.curPath.pop() // Pop first since we are reporting the whole slice
		s.report(false, vx, vy)
		return
	}

	// Replay the edit-script.
	var ix, iy int
	for _, e := range es {
		switch e {
		case diff.UniqueX:
			step.xkey, step.ykey = ix, -1
			s.report(false, vx.Index(ix), nothing)
			ix++
		case diff.UniqueY:
			step.xkey, step.ykey = -1, iy
			s.report(false, nothing, vy.Index(iy))
			iy++
		default:
			step.xkey, step.ykey = ix, iy
			if e == diff.Identity {
				s.report(true, vx.Index(ix), vy.Index(iy))
			} else {
				s.compareAny(vx.Index(ix), vy.Index(iy))
			}
			ix++
			iy++
		}
	}
	s.curPath.pop()
	return
}

func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
	if vx.IsNil() || vy.IsNil() {
		s.report(vx.IsNil() && vy.IsNil(), vx, vy)
		return
	}

	// We combine and sort the two map keys so that we can perform the
	// comparisons in a deterministic order.
	step := &mapIndex{pathStep: pathStep{t.Elem()}}
	s.curPath.push(step)
	defer s.curPath.pop()
	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
		step.key = k
		vvx := vx.MapIndex(k)
		vvy := vy.MapIndex(k)
		switch {
		case vvx.IsValid() && vvy.IsValid():
			s.compareAny(vvx, vvy)
		case vvx.IsValid() && !vvy.IsValid():
			s.report(false, vvx, nothing)
		case !vvx.IsValid() && vvy.IsValid():
			s.report(false, nothing, vvy)
		default:
			// It is possible for both vvx and vvy to be invalid if the
			// key contained a NaN value in it. There is no way in
			// reflection to be able to retrieve these values.
			// See https://golang.org/issue/11104
			panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
		}
	}
}

func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
	var vax, vay reflect.Value // Addressable versions of vx and vy

	step := &structField{}
	s.curPath.push(step)
	defer s.curPath.pop()
	for i := 0; i < t.NumField(); i++ {
		vvx := vx.Field(i)
		vvy := vy.Field(i)
		step.typ = t.Field(i).Type
		step.name = t.Field(i).Name
		step.idx = i
		step.unexported = !isExported(step.name)
		if step.unexported {
			// Defer checking of unexported fields until later to give an
			// Ignore a chance to ignore the field.
			if !vax.IsValid() || !vay.IsValid() {
				// For unsafeRetrieveField to work, the parent struct must
				// be addressable. Create a new copy of the values if
				// necessary to make them addressable.
				vax = makeAddressable(vx)
				vay = makeAddressable(vy)
			}
			step.force = s.exporters[t]
			step.pvx = vax
			step.pvy = vay
			step.field = t.Field(i)
		}
		s.compareAny(vvx, vvy)
	}
}

// report records the result of a single comparison.
// It also calls Report if any reporter is registered.
func (s *state) report(eq bool, vx, vy reflect.Value) {
	if eq {
		s.result.NSame++
	} else {
		s.result.NDiff++
	}
	if s.reporter != nil {
		s.reporter.Report(vx, vy, eq, s.curPath)
	}
}

// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }

// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
	ok := dc.curr == dc.next
	if ok {
		dc.curr = 0
		dc.next++
	}
	dc.curr++
	return ok
}

// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
	if v.CanAddr() {
		return v
	}
	vc := reflect.New(v.Type()).Elem()
	vc.Set(v)
	return vc
}