1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
import os
import json
from collections import OrderedDict
import singer
from singer import metadata
from tap_google_sheets.streams import STREAMS
LOGGER = singer.get_logger()
# Reference:
# https://github.com/singer-io/getting-started/blob/master/docs/DISCOVERY_MODE.md#Metadata
# Convert column index to column letter
def colnum_string(num):
string = ""
while num > 0:
num, remainder = divmod(num - 1, 26)
string = chr(65 + remainder) + string
return string
# Create sheet_metadata_json with columns from sheet
def get_sheet_schema_columns(sheet):
sheet_title = sheet.get('properties', {}).get('title')
sheet_json_schema = OrderedDict()
data = next(iter(sheet.get('data', [])), {})
row_data = data.get('rowData', [])
if row_data == []:
# Empty sheet, SKIP
LOGGER.info('SKIPPING Empty Sheet: {}'.format(sheet_title))
return None, None
# spreadsheet is an OrderedDict, with orderd sheets and rows in the repsonse
headers = row_data[0].get('values', [])
first_values = row_data[1].get('values', [])
# LOGGER.info('first_values = {}'.format(json.dumps(first_values, indent=2, sort_keys=True)))
sheet_json_schema = {
'type': 'object',
'additionalProperties': False,
'properties': {
'__sdc_spreadsheet_id': {
'type': ['null', 'string']
},
'__sdc_sheet_id': {
'type': ['null', 'integer']
},
'__sdc_row': {
'type': ['null', 'integer']
}
}
}
header_list = [] # used for checking uniqueness
columns = []
prior_header = None
i = 0
skipped = 0
# Read column headers until end or 2 consecutive skipped headers
for header in headers:
# LOGGER.info('header = {}'.format(json.dumps(header, indent=2, sort_keys=True)))
column_index = i + 1
column_letter = colnum_string(column_index)
header_value = header.get('formattedValue')
if header_value: # NOT skipped
column_is_skipped = False
skipped = 0
column_name = '{}'.format(header_value)
if column_name in header_list:
raise Exception('DUPLICATE HEADER ERROR: SHEET: {}, COL: {}, CELL: {}1'.format(
sheet_title, column_name, column_letter))
header_list.append(column_name)
first_value = None
try:
first_value = first_values[i]
except IndexError as err:
raise Exception('NO VALUE IN 2ND ROW FOR HEADER ERROR. SHEET: {}, COL: {}, CELL: {}2. {}'.format(
sheet_title, column_name, column_letter, err))
column_effective_value = first_value.get('effectiveValue', {})
col_val = None
if column_effective_value == {}:
column_effective_value_type = 'stringValue'
LOGGER.info('WARNING: NO VALUE IN 2ND ROW FOR HEADER. SHEET: {}, COL: {}, CELL: {}2.'.format(
sheet_title, column_name, column_letter))
LOGGER.info(' Setting column datatype to STRING')
else:
for key, val in column_effective_value.items():
if key in ('numberValue', 'stringValue', 'boolValue'):
column_effective_value_type = key
col_val = str(val)
elif key in ('errorType', 'formulaType'):
col_val = str(val)
raise Exception('DATA TYPE ERROR 2ND ROW VALUE: SHEET: {}, COL: {}, CELL: {}2, TYPE: {}, VALUE: {}'.format(
sheet_title, column_name, column_letter, key, col_val))
column_number_format = first_values[i].get('effectiveFormat', {}).get(
'numberFormat', {})
column_number_format_type = column_number_format.get('type')
# Determine datatype for sheet_json_schema
#
# column_effective_value_type = numberValue, stringValue, boolValue;
# INVALID: errorType, formulaType
# https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/other#ExtendedValue
#
# column_number_format_type = UNEPECIFIED, TEXT, NUMBER, PERCENT, CURRENCY, DATE,
# TIME, DATE_TIME, SCIENTIFIC
# https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/cells#NumberFormatType
#
column_format = None # Default
if column_effective_value == {}:
col_properties = {'type': ['null', 'string']}
column_gs_type = 'stringValue'
LOGGER.info('WARNING: 2ND ROW VALUE IS BLANK: SHEET: {}, COL: {}, CELL: {}2'.format(
sheet_title, column_name, column_letter))
LOGGER.info(' Setting column datatype to STRING')
elif column_effective_value_type == 'stringValue':
col_properties = {'type': ['null', 'string']}
column_gs_type = 'stringValue'
elif column_effective_value_type == 'boolValue':
col_properties = {'type': ['null', 'boolean', 'string']}
column_gs_type = 'boolValue'
elif column_effective_value_type == 'numberValue':
if column_number_format_type == 'DATE_TIME':
col_properties = {
'type': ['null', 'string'],
'format': 'date-time'
}
column_gs_type = 'numberType.DATE_TIME'
elif column_number_format_type == 'DATE':
col_properties = {
'type': ['null', 'string'],
'format': 'date'
}
column_gs_type = 'numberType.DATE'
elif column_number_format_type == 'TIME':
col_properties = {
'type': ['null', 'string'],
'format': 'time'
}
column_gs_type = 'numberType.TIME'
elif column_number_format_type == 'TEXT':
col_properties = {'type': ['null', 'string']}
column_gs_type = 'stringValue'
else:
# Interesting - order in the anyOf makes a difference.
# Number w/ multipleOf must be listed last, otherwise errors occur.
col_properties = {
'anyOf': [
{
'type': 'null'
},
{
'type': 'number',
'multipleOf': 1e-15
},
{
'type': 'string'
}
]
}
column_gs_type = 'numberType'
# Catch-all to deal with other types and set to string
# column_effective_value_type: formulaValue, errorValue, or other
else:
col_properties = {'type': ['null', 'string']}
column_gs_type = 'unsupportedValue'
LOGGER.info('WARNING: UNSUPPORTED 2ND ROW VALUE: SHEET: {}, COL: {}, CELL: {}2, TYPE: {}, VALUE: {}'.format(
sheet_title, column_name, column_letter, column_effective_value_type, col_val))
LOGGER.info('Converting to string.')
else: # skipped
column_is_skipped = True
skipped = skipped + 1
column_index_str = str(column_index).zfill(2)
column_name = '__sdc_skip_col_{}'.format(column_index_str)
col_properties = {'type': ['null', 'string']}
column_gs_type = 'stringValue'
LOGGER.info('WARNING: SKIPPED COLUMN; NO COLUMN HEADER. SHEET: {}, COL: {}, CELL: {}1'.format(
sheet_title, column_name, column_letter))
LOGGER.info(' This column will be skipped during data loading.')
if skipped >= 2:
# skipped = 2 consecutive skipped headers
# Remove prior_header column_name
sheet_json_schema['properties'].pop(prior_header, None)
LOGGER.info('TWO CONSECUTIVE SKIPPED COLUMNS. STOPPING SCAN AT: SHEET: {}, COL: {}, CELL {}1'.format(
sheet_title, column_name, column_letter))
break
else:
column = {}
column = {
'columnIndex': column_index,
'columnLetter': column_letter,
'columnName': column_name,
'columnType': column_gs_type,
'columnSkipped': column_is_skipped
}
columns.append(column)
sheet_json_schema['properties'][column_name] = col_properties
prior_header = column_name
i = i + 1
return sheet_json_schema, columns
# Get Header Row and 1st data row (Rows 1 & 2) from a Sheet on Spreadsheet w/ sheet_metadata query
# endpoint: spreadsheets/{spreadsheet_id}
# params: includeGridData = true, ranges = '{sheet_title}'!1:2
# This endpoint includes detailed metadata about each cell - incl. data type, formatting, etc.
def get_sheet_metadata(sheet, spreadsheet_id, client):
sheet_id = sheet.get('properties', {}).get('sheetId')
sheet_title = sheet.get('properties', {}).get('title')
LOGGER.info('sheet_id = {}, sheet_title = {}'.format(sheet_id, sheet_title))
stream_name = 'sheet_metadata'
stream_metadata = STREAMS.get(stream_name)
api = stream_metadata.get('api', 'sheets')
params = stream_metadata.get('params', {})
querystring = '&'.join(['%s=%s' % (key, value) for (key, value) in \
params.items()]).replace('{sheet_title}', sheet_title)
path = '{}?{}'.format(stream_metadata.get('path').replace('{spreadsheet_id}', \
spreadsheet_id), querystring)
sheet_md_results = client.get(path=path, api=api, endpoint=stream_name)
# sheet_metadata: 1st `sheets` node in results
sheet_metadata = sheet_md_results.get('sheets')[0]
# Create sheet_json_schema (for discovery/catalog) and columns (for sheet_metadata results)
try:
sheet_json_schema, columns = get_sheet_schema_columns(sheet_metadata)
except:
LOGGER.info('SKIPPING Malformed sheet: {}'.format(sheet_title))
sheet_json_schema, columns = None, None
return sheet_json_schema, columns
def get_abs_path(path):
return os.path.join(os.path.dirname(os.path.realpath(__file__)), path)
def get_schemas(client, spreadsheet_id):
schemas = {}
field_metadata = {}
for stream_name, stream_metadata in STREAMS.items():
schema_path = get_abs_path('schemas/{}.json'.format(stream_name))
with open(schema_path) as file:
schema = json.load(file)
schemas[stream_name] = schema
mdata = metadata.new()
# Documentation:
# https://github.com/singer-io/getting-started/blob/master/docs/DISCOVERY_MODE.md#singer-python-helper-functions
# Reference:
# https://github.com/singer-io/singer-python/blob/master/singer/metadata.py#L25-L44
mdata = metadata.get_standard_metadata(
schema=schema,
key_properties=stream_metadata.get('key_properties', None),
valid_replication_keys=stream_metadata.get('replication_keys', None),
replication_method=stream_metadata.get('replication_method', None)
)
field_metadata[stream_name] = mdata
if stream_name == 'spreadsheet_metadata':
api = stream_metadata.get('api', 'sheets')
params = stream_metadata.get('params', {})
querystring = '&'.join(['%s=%s' % (key, value) for (key, value) in params.items()])
path = '{}?{}'.format(stream_metadata.get('path').replace('{spreadsheet_id}', \
spreadsheet_id), querystring)
# GET spreadsheet_metadata, which incl. sheets (basic metadata for each worksheet)
spreadsheet_md_results = client.get(path=path, params=querystring, api=api, \
endpoint=stream_name)
sheets = spreadsheet_md_results.get('sheets')
if sheets:
# Loop thru each worksheet in spreadsheet
for sheet in sheets:
# GET sheet_json_schema for each worksheet (from function above)
sheet_json_schema, columns = get_sheet_metadata(sheet, spreadsheet_id, client)
# SKIP empty sheets (where sheet_json_schema and columns are None)
if sheet_json_schema and columns:
sheet_title = sheet.get('properties', {}).get('title')
schemas[sheet_title] = sheet_json_schema
sheet_mdata = metadata.new()
sheet_mdata = metadata.get_standard_metadata(
schema=sheet_json_schema,
key_properties=['__sdc_row'],
valid_replication_keys=None,
replication_method='FULL_TABLE'
)
field_metadata[sheet_title] = sheet_mdata
return schemas, field_metadata
|