diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/index.html | 1 | ||||
-rw-r--r-- | src/js/biginteger.js | 1620 | ||||
-rw-r--r-- | src/js/entropy.js | 1627 |
3 files changed, 1621 insertions, 1627 deletions
diff --git a/src/index.html b/src/index.html index e772546..b938226 100644 --- a/src/index.html +++ b/src/index.html | |||
@@ -571,6 +571,7 @@ | |||
571 | <script src="js/wordlist_french.js"></script> | 571 | <script src="js/wordlist_french.js"></script> |
572 | <script src="js/wordlist_italian.js"></script> | 572 | <script src="js/wordlist_italian.js"></script> |
573 | <script src="js/jsbip39.js"></script> | 573 | <script src="js/jsbip39.js"></script> |
574 | <script src="js/biginteger.js"></script> | ||
574 | <script src="js/zxcvbn.js"></script> | 575 | <script src="js/zxcvbn.js"></script> |
575 | <script src="js/entropy.js"></script> | 576 | <script src="js/entropy.js"></script> |
576 | <script src="js/index.js"></script> | 577 | <script src="js/index.js"></script> |
diff --git a/src/js/biginteger.js b/src/js/biginteger.js new file mode 100644 index 0000000..3f56d18 --- /dev/null +++ b/src/js/biginteger.js | |||
@@ -0,0 +1,1620 @@ | |||
1 | /* | ||
2 | JavaScript BigInteger library version 0.9.1 | ||
3 | http://silentmatt.com/biginteger/ | ||
4 | |||
5 | Copyright (c) 2009 Matthew Crumley <email@matthewcrumley.com> | ||
6 | Copyright (c) 2010,2011 by John Tobey <John.Tobey@gmail.com> | ||
7 | Licensed under the MIT license. | ||
8 | |||
9 | Support for arbitrary internal representation base was added by | ||
10 | Vitaly Magerya. | ||
11 | */ | ||
12 | |||
13 | /* | ||
14 | File: biginteger.js | ||
15 | |||
16 | Exports: | ||
17 | |||
18 | <BigInteger> | ||
19 | */ | ||
20 | (function(exports) { | ||
21 | "use strict"; | ||
22 | /* | ||
23 | Class: BigInteger | ||
24 | An arbitrarily-large integer. | ||
25 | |||
26 | <BigInteger> objects should be considered immutable. None of the "built-in" | ||
27 | methods modify *this* or their arguments. All properties should be | ||
28 | considered private. | ||
29 | |||
30 | All the methods of <BigInteger> instances can be called "statically". The | ||
31 | static versions are convenient if you don't already have a <BigInteger> | ||
32 | object. | ||
33 | |||
34 | As an example, these calls are equivalent. | ||
35 | |||
36 | > BigInteger(4).multiply(5); // returns BigInteger(20); | ||
37 | > BigInteger.multiply(4, 5); // returns BigInteger(20); | ||
38 | |||
39 | > var a = 42; | ||
40 | > var a = BigInteger.toJSValue("0b101010"); // Not completely useless... | ||
41 | */ | ||
42 | |||
43 | var CONSTRUCT = {}; // Unique token to call "private" version of constructor | ||
44 | |||
45 | /* | ||
46 | Constructor: BigInteger() | ||
47 | Convert a value to a <BigInteger>. | ||
48 | |||
49 | Although <BigInteger()> is the constructor for <BigInteger> objects, it is | ||
50 | best not to call it as a constructor. If *n* is a <BigInteger> object, it is | ||
51 | simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse> | ||
52 | without a radix argument. | ||
53 | |||
54 | > var n0 = BigInteger(); // Same as <BigInteger.ZERO> | ||
55 | > var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123 | ||
56 | > var n2 = BigInteger(123); // Create a new <BigInteger> with value 123 | ||
57 | > var n3 = BigInteger(n2); // Return n2, unchanged | ||
58 | |||
59 | The constructor form only takes an array and a sign. *n* must be an | ||
60 | array of numbers in little-endian order, where each digit is between 0 | ||
61 | and BigInteger.base. The second parameter sets the sign: -1 for | ||
62 | negative, +1 for positive, or 0 for zero. The array is *not copied and | ||
63 | may be modified*. If the array contains only zeros, the sign parameter | ||
64 | is ignored and is forced to zero. | ||
65 | |||
66 | > new BigInteger([5], -1): create a new BigInteger with value -5 | ||
67 | |||
68 | Parameters: | ||
69 | |||
70 | n - Value to convert to a <BigInteger>. | ||
71 | |||
72 | Returns: | ||
73 | |||
74 | A <BigInteger> value. | ||
75 | |||
76 | See Also: | ||
77 | |||
78 | <parse>, <BigInteger> | ||
79 | */ | ||
80 | function BigInteger(n, s, token) { | ||
81 | if (token !== CONSTRUCT) { | ||
82 | if (n instanceof BigInteger) { | ||
83 | return n; | ||
84 | } | ||
85 | else if (typeof n === "undefined") { | ||
86 | return ZERO; | ||
87 | } | ||
88 | return BigInteger.parse(n); | ||
89 | } | ||
90 | |||
91 | n = n || []; // Provide the nullary constructor for subclasses. | ||
92 | while (n.length && !n[n.length - 1]) { | ||
93 | --n.length; | ||
94 | } | ||
95 | this._d = n; | ||
96 | this._s = n.length ? (s || 1) : 0; | ||
97 | } | ||
98 | |||
99 | BigInteger._construct = function(n, s) { | ||
100 | return new BigInteger(n, s, CONSTRUCT); | ||
101 | }; | ||
102 | |||
103 | // Base-10 speedup hacks in parse, toString, exp10 and log functions | ||
104 | // require base to be a power of 10. 10^7 is the largest such power | ||
105 | // that won't cause a precision loss when digits are multiplied. | ||
106 | var BigInteger_base = 10000000; | ||
107 | var BigInteger_base_log10 = 7; | ||
108 | |||
109 | BigInteger.base = BigInteger_base; | ||
110 | BigInteger.base_log10 = BigInteger_base_log10; | ||
111 | |||
112 | var ZERO = new BigInteger([], 0, CONSTRUCT); | ||
113 | // Constant: ZERO | ||
114 | // <BigInteger> 0. | ||
115 | BigInteger.ZERO = ZERO; | ||
116 | |||
117 | var ONE = new BigInteger([1], 1, CONSTRUCT); | ||
118 | // Constant: ONE | ||
119 | // <BigInteger> 1. | ||
120 | BigInteger.ONE = ONE; | ||
121 | |||
122 | var M_ONE = new BigInteger(ONE._d, -1, CONSTRUCT); | ||
123 | // Constant: M_ONE | ||
124 | // <BigInteger> -1. | ||
125 | BigInteger.M_ONE = M_ONE; | ||
126 | |||
127 | // Constant: _0 | ||
128 | // Shortcut for <ZERO>. | ||
129 | BigInteger._0 = ZERO; | ||
130 | |||
131 | // Constant: _1 | ||
132 | // Shortcut for <ONE>. | ||
133 | BigInteger._1 = ONE; | ||
134 | |||
135 | /* | ||
136 | Constant: small | ||
137 | Array of <BigIntegers> from 0 to 36. | ||
138 | |||
139 | These are used internally for parsing, but useful when you need a "small" | ||
140 | <BigInteger>. | ||
141 | |||
142 | See Also: | ||
143 | |||
144 | <ZERO>, <ONE>, <_0>, <_1> | ||
145 | */ | ||
146 | BigInteger.small = [ | ||
147 | ZERO, | ||
148 | ONE, | ||
149 | /* Assuming BigInteger_base > 36 */ | ||
150 | new BigInteger( [2], 1, CONSTRUCT), | ||
151 | new BigInteger( [3], 1, CONSTRUCT), | ||
152 | new BigInteger( [4], 1, CONSTRUCT), | ||
153 | new BigInteger( [5], 1, CONSTRUCT), | ||
154 | new BigInteger( [6], 1, CONSTRUCT), | ||
155 | new BigInteger( [7], 1, CONSTRUCT), | ||
156 | new BigInteger( [8], 1, CONSTRUCT), | ||
157 | new BigInteger( [9], 1, CONSTRUCT), | ||
158 | new BigInteger([10], 1, CONSTRUCT), | ||
159 | new BigInteger([11], 1, CONSTRUCT), | ||
160 | new BigInteger([12], 1, CONSTRUCT), | ||
161 | new BigInteger([13], 1, CONSTRUCT), | ||
162 | new BigInteger([14], 1, CONSTRUCT), | ||
163 | new BigInteger([15], 1, CONSTRUCT), | ||
164 | new BigInteger([16], 1, CONSTRUCT), | ||
165 | new BigInteger([17], 1, CONSTRUCT), | ||
166 | new BigInteger([18], 1, CONSTRUCT), | ||
167 | new BigInteger([19], 1, CONSTRUCT), | ||
168 | new BigInteger([20], 1, CONSTRUCT), | ||
169 | new BigInteger([21], 1, CONSTRUCT), | ||
170 | new BigInteger([22], 1, CONSTRUCT), | ||
171 | new BigInteger([23], 1, CONSTRUCT), | ||
172 | new BigInteger([24], 1, CONSTRUCT), | ||
173 | new BigInteger([25], 1, CONSTRUCT), | ||
174 | new BigInteger([26], 1, CONSTRUCT), | ||
175 | new BigInteger([27], 1, CONSTRUCT), | ||
176 | new BigInteger([28], 1, CONSTRUCT), | ||
177 | new BigInteger([29], 1, CONSTRUCT), | ||
178 | new BigInteger([30], 1, CONSTRUCT), | ||
179 | new BigInteger([31], 1, CONSTRUCT), | ||
180 | new BigInteger([32], 1, CONSTRUCT), | ||
181 | new BigInteger([33], 1, CONSTRUCT), | ||
182 | new BigInteger([34], 1, CONSTRUCT), | ||
183 | new BigInteger([35], 1, CONSTRUCT), | ||
184 | new BigInteger([36], 1, CONSTRUCT) | ||
185 | ]; | ||
186 | |||
187 | // Used for parsing/radix conversion | ||
188 | BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split(""); | ||
189 | |||
190 | /* | ||
191 | Method: toString | ||
192 | Convert a <BigInteger> to a string. | ||
193 | |||
194 | When *base* is greater than 10, letters are upper case. | ||
195 | |||
196 | Parameters: | ||
197 | |||
198 | base - Optional base to represent the number in (default is base 10). | ||
199 | Must be between 2 and 36 inclusive, or an Error will be thrown. | ||
200 | |||
201 | Returns: | ||
202 | |||
203 | The string representation of the <BigInteger>. | ||
204 | */ | ||
205 | BigInteger.prototype.toString = function(base) { | ||
206 | base = +base || 10; | ||
207 | if (base < 2 || base > 36) { | ||
208 | throw new Error("illegal radix " + base + "."); | ||
209 | } | ||
210 | if (this._s === 0) { | ||
211 | return "0"; | ||
212 | } | ||
213 | if (base === 10) { | ||
214 | var str = this._s < 0 ? "-" : ""; | ||
215 | str += this._d[this._d.length - 1].toString(); | ||
216 | for (var i = this._d.length - 2; i >= 0; i--) { | ||
217 | var group = this._d[i].toString(); | ||
218 | while (group.length < BigInteger_base_log10) group = '0' + group; | ||
219 | str += group; | ||
220 | } | ||
221 | return str; | ||
222 | } | ||
223 | else { | ||
224 | var numerals = BigInteger.digits; | ||
225 | base = BigInteger.small[base]; | ||
226 | var sign = this._s; | ||
227 | |||
228 | var n = this.abs(); | ||
229 | var digits = []; | ||
230 | var digit; | ||
231 | |||
232 | while (n._s !== 0) { | ||
233 | var divmod = n.divRem(base); | ||
234 | n = divmod[0]; | ||
235 | digit = divmod[1]; | ||
236 | // TODO: This could be changed to unshift instead of reversing at the end. | ||
237 | // Benchmark both to compare speeds. | ||
238 | digits.push(numerals[digit.valueOf()]); | ||
239 | } | ||
240 | return (sign < 0 ? "-" : "") + digits.reverse().join(""); | ||
241 | } | ||
242 | }; | ||
243 | |||
244 | // Verify strings for parsing | ||
245 | BigInteger.radixRegex = [ | ||
246 | /^$/, | ||
247 | /^$/, | ||
248 | /^[01]*$/, | ||
249 | /^[012]*$/, | ||
250 | /^[0-3]*$/, | ||
251 | /^[0-4]*$/, | ||
252 | /^[0-5]*$/, | ||
253 | /^[0-6]*$/, | ||
254 | /^[0-7]*$/, | ||
255 | /^[0-8]*$/, | ||
256 | /^[0-9]*$/, | ||
257 | /^[0-9aA]*$/, | ||
258 | /^[0-9abAB]*$/, | ||
259 | /^[0-9abcABC]*$/, | ||
260 | /^[0-9a-dA-D]*$/, | ||
261 | /^[0-9a-eA-E]*$/, | ||
262 | /^[0-9a-fA-F]*$/, | ||
263 | /^[0-9a-gA-G]*$/, | ||
264 | /^[0-9a-hA-H]*$/, | ||
265 | /^[0-9a-iA-I]*$/, | ||
266 | /^[0-9a-jA-J]*$/, | ||
267 | /^[0-9a-kA-K]*$/, | ||
268 | /^[0-9a-lA-L]*$/, | ||
269 | /^[0-9a-mA-M]*$/, | ||
270 | /^[0-9a-nA-N]*$/, | ||
271 | /^[0-9a-oA-O]*$/, | ||
272 | /^[0-9a-pA-P]*$/, | ||
273 | /^[0-9a-qA-Q]*$/, | ||
274 | /^[0-9a-rA-R]*$/, | ||
275 | /^[0-9a-sA-S]*$/, | ||
276 | /^[0-9a-tA-T]*$/, | ||
277 | /^[0-9a-uA-U]*$/, | ||
278 | /^[0-9a-vA-V]*$/, | ||
279 | /^[0-9a-wA-W]*$/, | ||
280 | /^[0-9a-xA-X]*$/, | ||
281 | /^[0-9a-yA-Y]*$/, | ||
282 | /^[0-9a-zA-Z]*$/ | ||
283 | ]; | ||
284 | |||
285 | /* | ||
286 | Function: parse | ||
287 | Parse a string into a <BigInteger>. | ||
288 | |||
289 | *base* is optional but, if provided, must be from 2 to 36 inclusive. If | ||
290 | *base* is not provided, it will be guessed based on the leading characters | ||
291 | of *s* as follows: | ||
292 | |||
293 | - "0x" or "0X": *base* = 16 | ||
294 | - "0c" or "0C": *base* = 8 | ||
295 | - "0b" or "0B": *base* = 2 | ||
296 | - else: *base* = 10 | ||
297 | |||
298 | If no base is provided, or *base* is 10, the number can be in exponential | ||
299 | form. For example, these are all valid: | ||
300 | |||
301 | > BigInteger.parse("1e9"); // Same as "1000000000" | ||
302 | > BigInteger.parse("1.234*10^3"); // Same as 1234 | ||
303 | > BigInteger.parse("56789 * 10 ** -2"); // Same as 567 | ||
304 | |||
305 | If any characters fall outside the range defined by the radix, an exception | ||
306 | will be thrown. | ||
307 | |||
308 | Parameters: | ||
309 | |||
310 | s - The string to parse. | ||
311 | base - Optional radix (default is to guess based on *s*). | ||
312 | |||
313 | Returns: | ||
314 | |||
315 | a <BigInteger> instance. | ||
316 | */ | ||
317 | BigInteger.parse = function(s, base) { | ||
318 | // Expands a number in exponential form to decimal form. | ||
319 | // expandExponential("-13.441*10^5") === "1344100"; | ||
320 | // expandExponential("1.12300e-1") === "0.112300"; | ||
321 | // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000"; | ||
322 | function expandExponential(str) { | ||
323 | str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e"); | ||
324 | |||
325 | return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) { | ||
326 | c = +c; | ||
327 | var l = c < 0; | ||
328 | var i = n.length + c; | ||
329 | x = (l ? n : f).length; | ||
330 | c = ((c = Math.abs(c)) >= x ? c - x + l : 0); | ||
331 | var z = (new Array(c + 1)).join("0"); | ||
332 | var r = n + f; | ||
333 | return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : ""); | ||
334 | }); | ||
335 | } | ||
336 | |||
337 | s = s.toString(); | ||
338 | if (typeof base === "undefined" || +base === 10) { | ||
339 | s = expandExponential(s); | ||
340 | } | ||
341 | |||
342 | var prefixRE; | ||
343 | if (typeof base === "undefined") { | ||
344 | prefixRE = '0[xcb]'; | ||
345 | } | ||
346 | else if (base == 16) { | ||
347 | prefixRE = '0x'; | ||
348 | } | ||
349 | else if (base == 8) { | ||
350 | prefixRE = '0c'; | ||
351 | } | ||
352 | else if (base == 2) { | ||
353 | prefixRE = '0b'; | ||
354 | } | ||
355 | else { | ||
356 | prefixRE = ''; | ||
357 | } | ||
358 | var parts = new RegExp('^([+\\-]?)(' + prefixRE + ')?([0-9a-z]*)(?:\\.\\d*)?$', 'i').exec(s); | ||
359 | if (parts) { | ||
360 | var sign = parts[1] || "+"; | ||
361 | var baseSection = parts[2] || ""; | ||
362 | var digits = parts[3] || ""; | ||
363 | |||
364 | if (typeof base === "undefined") { | ||
365 | // Guess base | ||
366 | if (baseSection === "0x" || baseSection === "0X") { // Hex | ||
367 | base = 16; | ||
368 | } | ||
369 | else if (baseSection === "0c" || baseSection === "0C") { // Octal | ||
370 | base = 8; | ||
371 | } | ||
372 | else if (baseSection === "0b" || baseSection === "0B") { // Binary | ||
373 | base = 2; | ||
374 | } | ||
375 | else { | ||
376 | base = 10; | ||
377 | } | ||
378 | } | ||
379 | else if (base < 2 || base > 36) { | ||
380 | throw new Error("Illegal radix " + base + "."); | ||
381 | } | ||
382 | |||
383 | base = +base; | ||
384 | |||
385 | // Check for digits outside the range | ||
386 | if (!(BigInteger.radixRegex[base].test(digits))) { | ||
387 | throw new Error("Bad digit for radix " + base); | ||
388 | } | ||
389 | |||
390 | // Strip leading zeros, and convert to array | ||
391 | digits = digits.replace(/^0+/, "").split(""); | ||
392 | if (digits.length === 0) { | ||
393 | return ZERO; | ||
394 | } | ||
395 | |||
396 | // Get the sign (we know it's not zero) | ||
397 | sign = (sign === "-") ? -1 : 1; | ||
398 | |||
399 | // Optimize 10 | ||
400 | if (base == 10) { | ||
401 | var d = []; | ||
402 | while (digits.length >= BigInteger_base_log10) { | ||
403 | d.push(parseInt(digits.splice(digits.length-BigInteger.base_log10, BigInteger.base_log10).join(''), 10)); | ||
404 | } | ||
405 | d.push(parseInt(digits.join(''), 10)); | ||
406 | return new BigInteger(d, sign, CONSTRUCT); | ||
407 | } | ||
408 | |||
409 | // Do the conversion | ||
410 | var d = ZERO; | ||
411 | base = BigInteger.small[base]; | ||
412 | var small = BigInteger.small; | ||
413 | for (var i = 0; i < digits.length; i++) { | ||
414 | d = d.multiply(base).add(small[parseInt(digits[i], 36)]); | ||
415 | } | ||
416 | return new BigInteger(d._d, sign, CONSTRUCT); | ||
417 | } | ||
418 | else { | ||
419 | throw new Error("Invalid BigInteger format: " + s); | ||
420 | } | ||
421 | }; | ||
422 | |||
423 | /* | ||
424 | Function: add | ||
425 | Add two <BigIntegers>. | ||
426 | |||
427 | Parameters: | ||
428 | |||
429 | n - The number to add to *this*. Will be converted to a <BigInteger>. | ||
430 | |||
431 | Returns: | ||
432 | |||
433 | The numbers added together. | ||
434 | |||
435 | See Also: | ||
436 | |||
437 | <subtract>, <multiply>, <quotient>, <next> | ||
438 | */ | ||
439 | BigInteger.prototype.add = function(n) { | ||
440 | if (this._s === 0) { | ||
441 | return BigInteger(n); | ||
442 | } | ||
443 | |||
444 | n = BigInteger(n); | ||
445 | if (n._s === 0) { | ||
446 | return this; | ||
447 | } | ||
448 | if (this._s !== n._s) { | ||
449 | n = n.negate(); | ||
450 | return this.subtract(n); | ||
451 | } | ||
452 | |||
453 | var a = this._d; | ||
454 | var b = n._d; | ||
455 | var al = a.length; | ||
456 | var bl = b.length; | ||
457 | var sum = new Array(Math.max(al, bl) + 1); | ||
458 | var size = Math.min(al, bl); | ||
459 | var carry = 0; | ||
460 | var digit; | ||
461 | |||
462 | for (var i = 0; i < size; i++) { | ||
463 | digit = a[i] + b[i] + carry; | ||
464 | sum[i] = digit % BigInteger_base; | ||
465 | carry = (digit / BigInteger_base) | 0; | ||
466 | } | ||
467 | if (bl > al) { | ||
468 | a = b; | ||
469 | al = bl; | ||
470 | } | ||
471 | for (i = size; carry && i < al; i++) { | ||
472 | digit = a[i] + carry; | ||
473 | sum[i] = digit % BigInteger_base; | ||
474 | carry = (digit / BigInteger_base) | 0; | ||
475 | } | ||
476 | if (carry) { | ||
477 | sum[i] = carry; | ||
478 | } | ||
479 | |||
480 | for ( ; i < al; i++) { | ||
481 | sum[i] = a[i]; | ||
482 | } | ||
483 | |||
484 | return new BigInteger(sum, this._s, CONSTRUCT); | ||
485 | }; | ||
486 | |||
487 | /* | ||
488 | Function: negate | ||
489 | Get the additive inverse of a <BigInteger>. | ||
490 | |||
491 | Returns: | ||
492 | |||
493 | A <BigInteger> with the same magnatude, but with the opposite sign. | ||
494 | |||
495 | See Also: | ||
496 | |||
497 | <abs> | ||
498 | */ | ||
499 | BigInteger.prototype.negate = function() { | ||
500 | return new BigInteger(this._d, (-this._s) | 0, CONSTRUCT); | ||
501 | }; | ||
502 | |||
503 | /* | ||
504 | Function: abs | ||
505 | Get the absolute value of a <BigInteger>. | ||
506 | |||
507 | Returns: | ||
508 | |||
509 | A <BigInteger> with the same magnatude, but always positive (or zero). | ||
510 | |||
511 | See Also: | ||
512 | |||
513 | <negate> | ||
514 | */ | ||
515 | BigInteger.prototype.abs = function() { | ||
516 | return (this._s < 0) ? this.negate() : this; | ||
517 | }; | ||
518 | |||
519 | /* | ||
520 | Function: subtract | ||
521 | Subtract two <BigIntegers>. | ||
522 | |||
523 | Parameters: | ||
524 | |||
525 | n - The number to subtract from *this*. Will be converted to a <BigInteger>. | ||
526 | |||
527 | Returns: | ||
528 | |||
529 | The *n* subtracted from *this*. | ||
530 | |||
531 | See Also: | ||
532 | |||
533 | <add>, <multiply>, <quotient>, <prev> | ||
534 | */ | ||
535 | BigInteger.prototype.subtract = function(n) { | ||
536 | if (this._s === 0) { | ||
537 | return BigInteger(n).negate(); | ||
538 | } | ||
539 | |||
540 | n = BigInteger(n); | ||
541 | if (n._s === 0) { | ||
542 | return this; | ||
543 | } | ||
544 | if (this._s !== n._s) { | ||
545 | n = n.negate(); | ||
546 | return this.add(n); | ||
547 | } | ||
548 | |||
549 | var m = this; | ||
550 | // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a| | ||
551 | if (this._s < 0) { | ||
552 | m = new BigInteger(n._d, 1, CONSTRUCT); | ||
553 | n = new BigInteger(this._d, 1, CONSTRUCT); | ||
554 | } | ||
555 | |||
556 | // Both are positive => a - b | ||
557 | var sign = m.compareAbs(n); | ||
558 | if (sign === 0) { | ||
559 | return ZERO; | ||
560 | } | ||
561 | else if (sign < 0) { | ||
562 | // swap m and n | ||
563 | var t = n; | ||
564 | n = m; | ||
565 | m = t; | ||
566 | } | ||
567 | |||
568 | // a > b | ||
569 | var a = m._d; | ||
570 | var b = n._d; | ||
571 | var al = a.length; | ||
572 | var bl = b.length; | ||
573 | var diff = new Array(al); // al >= bl since a > b | ||
574 | var borrow = 0; | ||
575 | var i; | ||
576 | var digit; | ||
577 | |||
578 | for (i = 0; i < bl; i++) { | ||
579 | digit = a[i] - borrow - b[i]; | ||
580 | if (digit < 0) { | ||
581 | digit += BigInteger_base; | ||
582 | borrow = 1; | ||
583 | } | ||
584 | else { | ||
585 | borrow = 0; | ||
586 | } | ||
587 | diff[i] = digit; | ||
588 | } | ||
589 | for (i = bl; i < al; i++) { | ||
590 | digit = a[i] - borrow; | ||
591 | if (digit < 0) { | ||
592 | digit += BigInteger_base; | ||
593 | } | ||
594 | else { | ||
595 | diff[i++] = digit; | ||
596 | break; | ||
597 | } | ||
598 | diff[i] = digit; | ||
599 | } | ||
600 | for ( ; i < al; i++) { | ||
601 | diff[i] = a[i]; | ||
602 | } | ||
603 | |||
604 | return new BigInteger(diff, sign, CONSTRUCT); | ||
605 | }; | ||
606 | |||
607 | (function() { | ||
608 | function addOne(n, sign) { | ||
609 | var a = n._d; | ||
610 | var sum = a.slice(); | ||
611 | var carry = true; | ||
612 | var i = 0; | ||
613 | |||
614 | while (true) { | ||
615 | var digit = (a[i] || 0) + 1; | ||
616 | sum[i] = digit % BigInteger_base; | ||
617 | if (digit <= BigInteger_base - 1) { | ||
618 | break; | ||
619 | } | ||
620 | ++i; | ||
621 | } | ||
622 | |||
623 | return new BigInteger(sum, sign, CONSTRUCT); | ||
624 | } | ||
625 | |||
626 | function subtractOne(n, sign) { | ||
627 | var a = n._d; | ||
628 | var sum = a.slice(); | ||
629 | var borrow = true; | ||
630 | var i = 0; | ||
631 | |||
632 | while (true) { | ||
633 | var digit = (a[i] || 0) - 1; | ||
634 | if (digit < 0) { | ||
635 | sum[i] = digit + BigInteger_base; | ||
636 | } | ||
637 | else { | ||
638 | sum[i] = digit; | ||
639 | break; | ||
640 | } | ||
641 | ++i; | ||
642 | } | ||
643 | |||
644 | return new BigInteger(sum, sign, CONSTRUCT); | ||
645 | } | ||
646 | |||
647 | /* | ||
648 | Function: next | ||
649 | Get the next <BigInteger> (add one). | ||
650 | |||
651 | Returns: | ||
652 | |||
653 | *this* + 1. | ||
654 | |||
655 | See Also: | ||
656 | |||
657 | <add>, <prev> | ||
658 | */ | ||
659 | BigInteger.prototype.next = function() { | ||
660 | switch (this._s) { | ||
661 | case 0: | ||
662 | return ONE; | ||
663 | case -1: | ||
664 | return subtractOne(this, -1); | ||
665 | // case 1: | ||
666 | default: | ||
667 | return addOne(this, 1); | ||
668 | } | ||
669 | }; | ||
670 | |||
671 | /* | ||
672 | Function: prev | ||
673 | Get the previous <BigInteger> (subtract one). | ||
674 | |||
675 | Returns: | ||
676 | |||
677 | *this* - 1. | ||
678 | |||
679 | See Also: | ||
680 | |||
681 | <next>, <subtract> | ||
682 | */ | ||
683 | BigInteger.prototype.prev = function() { | ||
684 | switch (this._s) { | ||
685 | case 0: | ||
686 | return M_ONE; | ||
687 | case -1: | ||
688 | return addOne(this, -1); | ||
689 | // case 1: | ||
690 | default: | ||
691 | return subtractOne(this, 1); | ||
692 | } | ||
693 | }; | ||
694 | })(); | ||
695 | |||
696 | /* | ||
697 | Function: compareAbs | ||
698 | Compare the absolute value of two <BigIntegers>. | ||
699 | |||
700 | Calling <compareAbs> is faster than calling <abs> twice, then <compare>. | ||
701 | |||
702 | Parameters: | ||
703 | |||
704 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | ||
705 | |||
706 | Returns: | ||
707 | |||
708 | -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*. | ||
709 | |||
710 | See Also: | ||
711 | |||
712 | <compare>, <abs> | ||
713 | */ | ||
714 | BigInteger.prototype.compareAbs = function(n) { | ||
715 | if (this === n) { | ||
716 | return 0; | ||
717 | } | ||
718 | |||
719 | if (!(n instanceof BigInteger)) { | ||
720 | if (!isFinite(n)) { | ||
721 | return(isNaN(n) ? n : -1); | ||
722 | } | ||
723 | n = BigInteger(n); | ||
724 | } | ||
725 | |||
726 | if (this._s === 0) { | ||
727 | return (n._s !== 0) ? -1 : 0; | ||
728 | } | ||
729 | if (n._s === 0) { | ||
730 | return 1; | ||
731 | } | ||
732 | |||
733 | var l = this._d.length; | ||
734 | var nl = n._d.length; | ||
735 | if (l < nl) { | ||
736 | return -1; | ||
737 | } | ||
738 | else if (l > nl) { | ||
739 | return 1; | ||
740 | } | ||
741 | |||
742 | var a = this._d; | ||
743 | var b = n._d; | ||
744 | for (var i = l-1; i >= 0; i--) { | ||
745 | if (a[i] !== b[i]) { | ||
746 | return a[i] < b[i] ? -1 : 1; | ||
747 | } | ||
748 | } | ||
749 | |||
750 | return 0; | ||
751 | }; | ||
752 | |||
753 | /* | ||
754 | Function: compare | ||
755 | Compare two <BigIntegers>. | ||
756 | |||
757 | Parameters: | ||
758 | |||
759 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | ||
760 | |||
761 | Returns: | ||
762 | |||
763 | -1, 0, or +1 if *this* is less than, equal to, or greater than *n*. | ||
764 | |||
765 | See Also: | ||
766 | |||
767 | <compareAbs>, <isPositive>, <isNegative>, <isUnit> | ||
768 | */ | ||
769 | BigInteger.prototype.compare = function(n) { | ||
770 | if (this === n) { | ||
771 | return 0; | ||
772 | } | ||
773 | |||
774 | n = BigInteger(n); | ||
775 | |||
776 | if (this._s === 0) { | ||
777 | return -n._s; | ||
778 | } | ||
779 | |||
780 | if (this._s === n._s) { // both positive or both negative | ||
781 | var cmp = this.compareAbs(n); | ||
782 | return cmp * this._s; | ||
783 | } | ||
784 | else { | ||
785 | return this._s; | ||
786 | } | ||
787 | }; | ||
788 | |||
789 | /* | ||
790 | Function: isUnit | ||
791 | Return true iff *this* is either 1 or -1. | ||
792 | |||
793 | Returns: | ||
794 | |||
795 | true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>. | ||
796 | |||
797 | See Also: | ||
798 | |||
799 | <isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>, | ||
800 | <BigInteger.ONE>, <BigInteger.M_ONE> | ||
801 | */ | ||
802 | BigInteger.prototype.isUnit = function() { | ||
803 | return this === ONE || | ||
804 | this === M_ONE || | ||
805 | (this._d.length === 1 && this._d[0] === 1); | ||
806 | }; | ||
807 | |||
808 | /* | ||
809 | Function: multiply | ||
810 | Multiply two <BigIntegers>. | ||
811 | |||
812 | Parameters: | ||
813 | |||
814 | n - The number to multiply *this* by. Will be converted to a | ||
815 | <BigInteger>. | ||
816 | |||
817 | Returns: | ||
818 | |||
819 | The numbers multiplied together. | ||
820 | |||
821 | See Also: | ||
822 | |||
823 | <add>, <subtract>, <quotient>, <square> | ||
824 | */ | ||
825 | BigInteger.prototype.multiply = function(n) { | ||
826 | // TODO: Consider adding Karatsuba multiplication for large numbers | ||
827 | if (this._s === 0) { | ||
828 | return ZERO; | ||
829 | } | ||
830 | |||
831 | n = BigInteger(n); | ||
832 | if (n._s === 0) { | ||
833 | return ZERO; | ||
834 | } | ||
835 | if (this.isUnit()) { | ||
836 | if (this._s < 0) { | ||
837 | return n.negate(); | ||
838 | } | ||
839 | return n; | ||
840 | } | ||
841 | if (n.isUnit()) { | ||
842 | if (n._s < 0) { | ||
843 | return this.negate(); | ||
844 | } | ||
845 | return this; | ||
846 | } | ||
847 | if (this === n) { | ||
848 | return this.square(); | ||
849 | } | ||
850 | |||
851 | var r = (this._d.length >= n._d.length); | ||
852 | var a = (r ? this : n)._d; // a will be longer than b | ||
853 | var b = (r ? n : this)._d; | ||
854 | var al = a.length; | ||
855 | var bl = b.length; | ||
856 | |||
857 | var pl = al + bl; | ||
858 | var partial = new Array(pl); | ||
859 | var i; | ||
860 | for (i = 0; i < pl; i++) { | ||
861 | partial[i] = 0; | ||
862 | } | ||
863 | |||
864 | for (i = 0; i < bl; i++) { | ||
865 | var carry = 0; | ||
866 | var bi = b[i]; | ||
867 | var jlimit = al + i; | ||
868 | var digit; | ||
869 | for (var j = i; j < jlimit; j++) { | ||
870 | digit = partial[j] + bi * a[j - i] + carry; | ||
871 | carry = (digit / BigInteger_base) | 0; | ||
872 | partial[j] = (digit % BigInteger_base) | 0; | ||
873 | } | ||
874 | if (carry) { | ||
875 | digit = partial[j] + carry; | ||
876 | carry = (digit / BigInteger_base) | 0; | ||
877 | partial[j] = digit % BigInteger_base; | ||
878 | } | ||
879 | } | ||
880 | return new BigInteger(partial, this._s * n._s, CONSTRUCT); | ||
881 | }; | ||
882 | |||
883 | // Multiply a BigInteger by a single-digit native number | ||
884 | // Assumes that this and n are >= 0 | ||
885 | // This is not really intended to be used outside the library itself | ||
886 | BigInteger.prototype.multiplySingleDigit = function(n) { | ||
887 | if (n === 0 || this._s === 0) { | ||
888 | return ZERO; | ||
889 | } | ||
890 | if (n === 1) { | ||
891 | return this; | ||
892 | } | ||
893 | |||
894 | var digit; | ||
895 | if (this._d.length === 1) { | ||
896 | digit = this._d[0] * n; | ||
897 | if (digit >= BigInteger_base) { | ||
898 | return new BigInteger([(digit % BigInteger_base)|0, | ||
899 | (digit / BigInteger_base)|0], 1, CONSTRUCT); | ||
900 | } | ||
901 | return new BigInteger([digit], 1, CONSTRUCT); | ||
902 | } | ||
903 | |||
904 | if (n === 2) { | ||
905 | return this.add(this); | ||
906 | } | ||
907 | if (this.isUnit()) { | ||
908 | return new BigInteger([n], 1, CONSTRUCT); | ||
909 | } | ||
910 | |||
911 | var a = this._d; | ||
912 | var al = a.length; | ||
913 | |||
914 | var pl = al + 1; | ||
915 | var partial = new Array(pl); | ||
916 | for (var i = 0; i < pl; i++) { | ||
917 | partial[i] = 0; | ||
918 | } | ||
919 | |||
920 | var carry = 0; | ||
921 | for (var j = 0; j < al; j++) { | ||
922 | digit = n * a[j] + carry; | ||
923 | carry = (digit / BigInteger_base) | 0; | ||
924 | partial[j] = (digit % BigInteger_base) | 0; | ||
925 | } | ||
926 | if (carry) { | ||
927 | partial[j] = carry; | ||
928 | } | ||
929 | |||
930 | return new BigInteger(partial, 1, CONSTRUCT); | ||
931 | }; | ||
932 | |||
933 | /* | ||
934 | Function: square | ||
935 | Multiply a <BigInteger> by itself. | ||
936 | |||
937 | This is slightly faster than regular multiplication, since it removes the | ||
938 | duplicated multiplcations. | ||
939 | |||
940 | Returns: | ||
941 | |||
942 | > this.multiply(this) | ||
943 | |||
944 | See Also: | ||
945 | <multiply> | ||
946 | */ | ||
947 | BigInteger.prototype.square = function() { | ||
948 | // Normally, squaring a 10-digit number would take 100 multiplications. | ||
949 | // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated. | ||
950 | // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies). | ||
951 | // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org | ||
952 | |||
953 | if (this._s === 0) { | ||
954 | return ZERO; | ||
955 | } | ||
956 | if (this.isUnit()) { | ||
957 | return ONE; | ||
958 | } | ||
959 | |||
960 | var digits = this._d; | ||
961 | var length = digits.length; | ||
962 | var imult1 = new Array(length + length + 1); | ||
963 | var product, carry, k; | ||
964 | var i; | ||
965 | |||
966 | // Calculate diagonal | ||
967 | for (i = 0; i < length; i++) { | ||
968 | k = i * 2; | ||
969 | product = digits[i] * digits[i]; | ||
970 | carry = (product / BigInteger_base) | 0; | ||
971 | imult1[k] = product % BigInteger_base; | ||
972 | imult1[k + 1] = carry; | ||
973 | } | ||
974 | |||
975 | // Calculate repeating part | ||
976 | for (i = 0; i < length; i++) { | ||
977 | carry = 0; | ||
978 | k = i * 2 + 1; | ||
979 | for (var j = i + 1; j < length; j++, k++) { | ||
980 | product = digits[j] * digits[i] * 2 + imult1[k] + carry; | ||
981 | carry = (product / BigInteger_base) | 0; | ||
982 | imult1[k] = product % BigInteger_base; | ||
983 | } | ||
984 | k = length + i; | ||
985 | var digit = carry + imult1[k]; | ||
986 | carry = (digit / BigInteger_base) | 0; | ||
987 | imult1[k] = digit % BigInteger_base; | ||
988 | imult1[k + 1] += carry; | ||
989 | } | ||
990 | |||
991 | return new BigInteger(imult1, 1, CONSTRUCT); | ||
992 | }; | ||
993 | |||
994 | /* | ||
995 | Function: quotient | ||
996 | Divide two <BigIntegers> and truncate towards zero. | ||
997 | |||
998 | <quotient> throws an exception if *n* is zero. | ||
999 | |||
1000 | Parameters: | ||
1001 | |||
1002 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | ||
1003 | |||
1004 | Returns: | ||
1005 | |||
1006 | The *this* / *n*, truncated to an integer. | ||
1007 | |||
1008 | See Also: | ||
1009 | |||
1010 | <add>, <subtract>, <multiply>, <divRem>, <remainder> | ||
1011 | */ | ||
1012 | BigInteger.prototype.quotient = function(n) { | ||
1013 | return this.divRem(n)[0]; | ||
1014 | }; | ||
1015 | |||
1016 | /* | ||
1017 | Function: divide | ||
1018 | Deprecated synonym for <quotient>. | ||
1019 | */ | ||
1020 | BigInteger.prototype.divide = BigInteger.prototype.quotient; | ||
1021 | |||
1022 | /* | ||
1023 | Function: remainder | ||
1024 | Calculate the remainder of two <BigIntegers>. | ||
1025 | |||
1026 | <remainder> throws an exception if *n* is zero. | ||
1027 | |||
1028 | Parameters: | ||
1029 | |||
1030 | n - The remainder after *this* is divided *this* by *n*. Will be | ||
1031 | converted to a <BigInteger>. | ||
1032 | |||
1033 | Returns: | ||
1034 | |||
1035 | *this* % *n*. | ||
1036 | |||
1037 | See Also: | ||
1038 | |||
1039 | <divRem>, <quotient> | ||
1040 | */ | ||
1041 | BigInteger.prototype.remainder = function(n) { | ||
1042 | return this.divRem(n)[1]; | ||
1043 | }; | ||
1044 | |||
1045 | /* | ||
1046 | Function: divRem | ||
1047 | Calculate the integer quotient and remainder of two <BigIntegers>. | ||
1048 | |||
1049 | <divRem> throws an exception if *n* is zero. | ||
1050 | |||
1051 | Parameters: | ||
1052 | |||
1053 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | ||
1054 | |||
1055 | Returns: | ||
1056 | |||
1057 | A two-element array containing the quotient and the remainder. | ||
1058 | |||
1059 | > a.divRem(b) | ||
1060 | |||
1061 | is exactly equivalent to | ||
1062 | |||
1063 | > [a.quotient(b), a.remainder(b)] | ||
1064 | |||
1065 | except it is faster, because they are calculated at the same time. | ||
1066 | |||
1067 | See Also: | ||
1068 | |||
1069 | <quotient>, <remainder> | ||
1070 | */ | ||
1071 | BigInteger.prototype.divRem = function(n) { | ||
1072 | n = BigInteger(n); | ||
1073 | if (n._s === 0) { | ||
1074 | throw new Error("Divide by zero"); | ||
1075 | } | ||
1076 | if (this._s === 0) { | ||
1077 | return [ZERO, ZERO]; | ||
1078 | } | ||
1079 | if (n._d.length === 1) { | ||
1080 | return this.divRemSmall(n._s * n._d[0]); | ||
1081 | } | ||
1082 | |||
1083 | // Test for easy cases -- |n1| <= |n2| | ||
1084 | switch (this.compareAbs(n)) { | ||
1085 | case 0: // n1 == n2 | ||
1086 | return [this._s === n._s ? ONE : M_ONE, ZERO]; | ||
1087 | case -1: // |n1| < |n2| | ||
1088 | return [ZERO, this]; | ||
1089 | } | ||
1090 | |||
1091 | var sign = this._s * n._s; | ||
1092 | var a = n.abs(); | ||
1093 | var b_digits = this._d; | ||
1094 | var b_index = b_digits.length; | ||
1095 | var digits = n._d.length; | ||
1096 | var quot = []; | ||
1097 | var guess; | ||
1098 | |||
1099 | var part = new BigInteger([], 0, CONSTRUCT); | ||
1100 | |||
1101 | while (b_index) { | ||
1102 | part._d.unshift(b_digits[--b_index]); | ||
1103 | part = new BigInteger(part._d, 1, CONSTRUCT); | ||
1104 | |||
1105 | if (part.compareAbs(n) < 0) { | ||
1106 | quot.push(0); | ||
1107 | continue; | ||
1108 | } | ||
1109 | if (part._s === 0) { | ||
1110 | guess = 0; | ||
1111 | } | ||
1112 | else { | ||
1113 | var xlen = part._d.length, ylen = a._d.length; | ||
1114 | var highx = part._d[xlen-1]*BigInteger_base + part._d[xlen-2]; | ||
1115 | var highy = a._d[ylen-1]*BigInteger_base + a._d[ylen-2]; | ||
1116 | if (part._d.length > a._d.length) { | ||
1117 | // The length of part._d can either match a._d length, | ||
1118 | // or exceed it by one. | ||
1119 | highx = (highx+1)*BigInteger_base; | ||
1120 | } | ||
1121 | guess = Math.ceil(highx/highy); | ||
1122 | } | ||
1123 | do { | ||
1124 | var check = a.multiplySingleDigit(guess); | ||
1125 | if (check.compareAbs(part) <= 0) { | ||
1126 | break; | ||
1127 | } | ||
1128 | guess--; | ||
1129 | } while (guess); | ||
1130 | |||
1131 | quot.push(guess); | ||
1132 | if (!guess) { | ||
1133 | continue; | ||
1134 | } | ||
1135 | var diff = part.subtract(check); | ||
1136 | part._d = diff._d.slice(); | ||
1137 | } | ||
1138 | |||
1139 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), | ||
1140 | new BigInteger(part._d, this._s, CONSTRUCT)]; | ||
1141 | }; | ||
1142 | |||
1143 | // Throws an exception if n is outside of (-BigInteger.base, -1] or | ||
1144 | // [1, BigInteger.base). It's not necessary to call this, since the | ||
1145 | // other division functions will call it if they are able to. | ||
1146 | BigInteger.prototype.divRemSmall = function(n) { | ||
1147 | var r; | ||
1148 | n = +n; | ||
1149 | if (n === 0) { | ||
1150 | throw new Error("Divide by zero"); | ||
1151 | } | ||
1152 | |||
1153 | var n_s = n < 0 ? -1 : 1; | ||
1154 | var sign = this._s * n_s; | ||
1155 | n = Math.abs(n); | ||
1156 | |||
1157 | if (n < 1 || n >= BigInteger_base) { | ||
1158 | throw new Error("Argument out of range"); | ||
1159 | } | ||
1160 | |||
1161 | if (this._s === 0) { | ||
1162 | return [ZERO, ZERO]; | ||
1163 | } | ||
1164 | |||
1165 | if (n === 1 || n === -1) { | ||
1166 | return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign, CONSTRUCT), ZERO]; | ||
1167 | } | ||
1168 | |||
1169 | // 2 <= n < BigInteger_base | ||
1170 | |||
1171 | // divide a single digit by a single digit | ||
1172 | if (this._d.length === 1) { | ||
1173 | var q = new BigInteger([(this._d[0] / n) | 0], 1, CONSTRUCT); | ||
1174 | r = new BigInteger([(this._d[0] % n) | 0], 1, CONSTRUCT); | ||
1175 | if (sign < 0) { | ||
1176 | q = q.negate(); | ||
1177 | } | ||
1178 | if (this._s < 0) { | ||
1179 | r = r.negate(); | ||
1180 | } | ||
1181 | return [q, r]; | ||
1182 | } | ||
1183 | |||
1184 | var digits = this._d.slice(); | ||
1185 | var quot = new Array(digits.length); | ||
1186 | var part = 0; | ||
1187 | var diff = 0; | ||
1188 | var i = 0; | ||
1189 | var guess; | ||
1190 | |||
1191 | while (digits.length) { | ||
1192 | part = part * BigInteger_base + digits[digits.length - 1]; | ||
1193 | if (part < n) { | ||
1194 | quot[i++] = 0; | ||
1195 | digits.pop(); | ||
1196 | diff = BigInteger_base * diff + part; | ||
1197 | continue; | ||
1198 | } | ||
1199 | if (part === 0) { | ||
1200 | guess = 0; | ||
1201 | } | ||
1202 | else { | ||
1203 | guess = (part / n) | 0; | ||
1204 | } | ||
1205 | |||
1206 | var check = n * guess; | ||
1207 | diff = part - check; | ||
1208 | quot[i++] = guess; | ||
1209 | if (!guess) { | ||
1210 | digits.pop(); | ||
1211 | continue; | ||
1212 | } | ||
1213 | |||
1214 | digits.pop(); | ||
1215 | part = diff; | ||
1216 | } | ||
1217 | |||
1218 | r = new BigInteger([diff], 1, CONSTRUCT); | ||
1219 | if (this._s < 0) { | ||
1220 | r = r.negate(); | ||
1221 | } | ||
1222 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), r]; | ||
1223 | }; | ||
1224 | |||
1225 | /* | ||
1226 | Function: isEven | ||
1227 | Return true iff *this* is divisible by two. | ||
1228 | |||
1229 | Note that <BigInteger.ZERO> is even. | ||
1230 | |||
1231 | Returns: | ||
1232 | |||
1233 | true if *this* is even, false otherwise. | ||
1234 | |||
1235 | See Also: | ||
1236 | |||
1237 | <isOdd> | ||
1238 | */ | ||
1239 | BigInteger.prototype.isEven = function() { | ||
1240 | var digits = this._d; | ||
1241 | return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0; | ||
1242 | }; | ||
1243 | |||
1244 | /* | ||
1245 | Function: isOdd | ||
1246 | Return true iff *this* is not divisible by two. | ||
1247 | |||
1248 | Returns: | ||
1249 | |||
1250 | true if *this* is odd, false otherwise. | ||
1251 | |||
1252 | See Also: | ||
1253 | |||
1254 | <isEven> | ||
1255 | */ | ||
1256 | BigInteger.prototype.isOdd = function() { | ||
1257 | return !this.isEven(); | ||
1258 | }; | ||
1259 | |||
1260 | /* | ||
1261 | Function: sign | ||
1262 | Get the sign of a <BigInteger>. | ||
1263 | |||
1264 | Returns: | ||
1265 | |||
1266 | * -1 if *this* < 0 | ||
1267 | * 0 if *this* == 0 | ||
1268 | * +1 if *this* > 0 | ||
1269 | |||
1270 | See Also: | ||
1271 | |||
1272 | <isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO> | ||
1273 | */ | ||
1274 | BigInteger.prototype.sign = function() { | ||
1275 | return this._s; | ||
1276 | }; | ||
1277 | |||
1278 | /* | ||
1279 | Function: isPositive | ||
1280 | Return true iff *this* > 0. | ||
1281 | |||
1282 | Returns: | ||
1283 | |||
1284 | true if *this*.compare(<BigInteger.ZERO>) == 1. | ||
1285 | |||
1286 | See Also: | ||
1287 | |||
1288 | <sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO> | ||
1289 | */ | ||
1290 | BigInteger.prototype.isPositive = function() { | ||
1291 | return this._s > 0; | ||
1292 | }; | ||
1293 | |||
1294 | /* | ||
1295 | Function: isNegative | ||
1296 | Return true iff *this* < 0. | ||
1297 | |||
1298 | Returns: | ||
1299 | |||
1300 | true if *this*.compare(<BigInteger.ZERO>) == -1. | ||
1301 | |||
1302 | See Also: | ||
1303 | |||
1304 | <sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO> | ||
1305 | */ | ||
1306 | BigInteger.prototype.isNegative = function() { | ||
1307 | return this._s < 0; | ||
1308 | }; | ||
1309 | |||
1310 | /* | ||
1311 | Function: isZero | ||
1312 | Return true iff *this* == 0. | ||
1313 | |||
1314 | Returns: | ||
1315 | |||
1316 | true if *this*.compare(<BigInteger.ZERO>) == 0. | ||
1317 | |||
1318 | See Also: | ||
1319 | |||
1320 | <sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO> | ||
1321 | */ | ||
1322 | BigInteger.prototype.isZero = function() { | ||
1323 | return this._s === 0; | ||
1324 | }; | ||
1325 | |||
1326 | /* | ||
1327 | Function: exp10 | ||
1328 | Multiply a <BigInteger> by a power of 10. | ||
1329 | |||
1330 | This is equivalent to, but faster than | ||
1331 | |||
1332 | > if (n >= 0) { | ||
1333 | > return this.multiply(BigInteger("1e" + n)); | ||
1334 | > } | ||
1335 | > else { // n <= 0 | ||
1336 | > return this.quotient(BigInteger("1e" + -n)); | ||
1337 | > } | ||
1338 | |||
1339 | Parameters: | ||
1340 | |||
1341 | n - The power of 10 to multiply *this* by. *n* is converted to a | ||
1342 | javascipt number and must be no greater than <BigInteger.MAX_EXP> | ||
1343 | (0x7FFFFFFF), or an exception will be thrown. | ||
1344 | |||
1345 | Returns: | ||
1346 | |||
1347 | *this* * (10 ** *n*), truncated to an integer if necessary. | ||
1348 | |||
1349 | See Also: | ||
1350 | |||
1351 | <pow>, <multiply> | ||
1352 | */ | ||
1353 | BigInteger.prototype.exp10 = function(n) { | ||
1354 | n = +n; | ||
1355 | if (n === 0) { | ||
1356 | return this; | ||
1357 | } | ||
1358 | if (Math.abs(n) > Number(MAX_EXP)) { | ||
1359 | throw new Error("exponent too large in BigInteger.exp10"); | ||
1360 | } | ||
1361 | // Optimization for this == 0. This also keeps us from having to trim zeros in the positive n case | ||
1362 | if (this._s === 0) { | ||
1363 | return ZERO; | ||
1364 | } | ||
1365 | if (n > 0) { | ||
1366 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | ||
1367 | |||
1368 | for (; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | ||
1369 | k._d.unshift(0); | ||
1370 | } | ||
1371 | if (n == 0) | ||
1372 | return k; | ||
1373 | k._s = 1; | ||
1374 | k = k.multiplySingleDigit(Math.pow(10, n)); | ||
1375 | return (this._s < 0 ? k.negate() : k); | ||
1376 | } else if (-n >= this._d.length*BigInteger_base_log10) { | ||
1377 | return ZERO; | ||
1378 | } else { | ||
1379 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | ||
1380 | |||
1381 | for (n = -n; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | ||
1382 | k._d.shift(); | ||
1383 | } | ||
1384 | return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0]; | ||
1385 | } | ||
1386 | }; | ||
1387 | |||
1388 | /* | ||
1389 | Function: pow | ||
1390 | Raise a <BigInteger> to a power. | ||
1391 | |||
1392 | In this implementation, 0**0 is 1. | ||
1393 | |||
1394 | Parameters: | ||
1395 | |||
1396 | n - The exponent to raise *this* by. *n* must be no greater than | ||
1397 | <BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown. | ||
1398 | |||
1399 | Returns: | ||
1400 | |||
1401 | *this* raised to the *nth* power. | ||
1402 | |||
1403 | See Also: | ||
1404 | |||
1405 | <modPow> | ||
1406 | */ | ||
1407 | BigInteger.prototype.pow = function(n) { | ||
1408 | if (this.isUnit()) { | ||
1409 | if (this._s > 0) { | ||
1410 | return this; | ||
1411 | } | ||
1412 | else { | ||
1413 | return BigInteger(n).isOdd() ? this : this.negate(); | ||
1414 | } | ||
1415 | } | ||
1416 | |||
1417 | n = BigInteger(n); | ||
1418 | if (n._s === 0) { | ||
1419 | return ONE; | ||
1420 | } | ||
1421 | else if (n._s < 0) { | ||
1422 | if (this._s === 0) { | ||
1423 | throw new Error("Divide by zero"); | ||
1424 | } | ||
1425 | else { | ||
1426 | return ZERO; | ||
1427 | } | ||
1428 | } | ||
1429 | if (this._s === 0) { | ||
1430 | return ZERO; | ||
1431 | } | ||
1432 | if (n.isUnit()) { | ||
1433 | return this; | ||
1434 | } | ||
1435 | |||
1436 | if (n.compareAbs(MAX_EXP) > 0) { | ||
1437 | throw new Error("exponent too large in BigInteger.pow"); | ||
1438 | } | ||
1439 | var x = this; | ||
1440 | var aux = ONE; | ||
1441 | var two = BigInteger.small[2]; | ||
1442 | |||
1443 | while (n.isPositive()) { | ||
1444 | if (n.isOdd()) { | ||
1445 | aux = aux.multiply(x); | ||
1446 | if (n.isUnit()) { | ||
1447 | return aux; | ||
1448 | } | ||
1449 | } | ||
1450 | x = x.square(); | ||
1451 | n = n.quotient(two); | ||
1452 | } | ||
1453 | |||
1454 | return aux; | ||
1455 | }; | ||
1456 | |||
1457 | /* | ||
1458 | Function: modPow | ||
1459 | Raise a <BigInteger> to a power (mod m). | ||
1460 | |||
1461 | Because it is reduced by a modulus, <modPow> is not limited by | ||
1462 | <BigInteger.MAX_EXP> like <pow>. | ||
1463 | |||
1464 | Parameters: | ||
1465 | |||
1466 | exponent - The exponent to raise *this* by. Must be positive. | ||
1467 | modulus - The modulus. | ||
1468 | |||
1469 | Returns: | ||
1470 | |||
1471 | *this* ^ *exponent* (mod *modulus*). | ||
1472 | |||
1473 | See Also: | ||
1474 | |||
1475 | <pow>, <mod> | ||
1476 | */ | ||
1477 | BigInteger.prototype.modPow = function(exponent, modulus) { | ||
1478 | var result = ONE; | ||
1479 | var base = this; | ||
1480 | |||
1481 | while (exponent.isPositive()) { | ||
1482 | if (exponent.isOdd()) { | ||
1483 | result = result.multiply(base).remainder(modulus); | ||
1484 | } | ||
1485 | |||
1486 | exponent = exponent.quotient(BigInteger.small[2]); | ||
1487 | if (exponent.isPositive()) { | ||
1488 | base = base.square().remainder(modulus); | ||
1489 | } | ||
1490 | } | ||
1491 | |||
1492 | return result; | ||
1493 | }; | ||
1494 | |||
1495 | /* | ||
1496 | Function: log | ||
1497 | Get the natural logarithm of a <BigInteger> as a native JavaScript number. | ||
1498 | |||
1499 | This is equivalent to | ||
1500 | |||
1501 | > Math.log(this.toJSValue()) | ||
1502 | |||
1503 | but handles values outside of the native number range. | ||
1504 | |||
1505 | Returns: | ||
1506 | |||
1507 | log( *this* ) | ||
1508 | |||
1509 | See Also: | ||
1510 | |||
1511 | <toJSValue> | ||
1512 | */ | ||
1513 | BigInteger.prototype.log = function() { | ||
1514 | switch (this._s) { | ||
1515 | case 0: return -Infinity; | ||
1516 | case -1: return NaN; | ||
1517 | default: // Fall through. | ||
1518 | } | ||
1519 | |||
1520 | var l = this._d.length; | ||
1521 | |||
1522 | if (l*BigInteger_base_log10 < 30) { | ||
1523 | return Math.log(this.valueOf()); | ||
1524 | } | ||
1525 | |||
1526 | var N = Math.ceil(30/BigInteger_base_log10); | ||
1527 | var firstNdigits = this._d.slice(l - N); | ||
1528 | return Math.log((new BigInteger(firstNdigits, 1, CONSTRUCT)).valueOf()) + (l - N) * Math.log(BigInteger_base); | ||
1529 | }; | ||
1530 | |||
1531 | /* | ||
1532 | Function: valueOf | ||
1533 | Convert a <BigInteger> to a native JavaScript integer. | ||
1534 | |||
1535 | This is called automatically by JavaScipt to convert a <BigInteger> to a | ||
1536 | native value. | ||
1537 | |||
1538 | Returns: | ||
1539 | |||
1540 | > parseInt(this.toString(), 10) | ||
1541 | |||
1542 | See Also: | ||
1543 | |||
1544 | <toString>, <toJSValue> | ||
1545 | */ | ||
1546 | BigInteger.prototype.valueOf = function() { | ||
1547 | return parseInt(this.toString(), 10); | ||
1548 | }; | ||
1549 | |||
1550 | /* | ||
1551 | Function: toJSValue | ||
1552 | Convert a <BigInteger> to a native JavaScript integer. | ||
1553 | |||
1554 | This is the same as valueOf, but more explicitly named. | ||
1555 | |||
1556 | Returns: | ||
1557 | |||
1558 | > parseInt(this.toString(), 10) | ||
1559 | |||
1560 | See Also: | ||
1561 | |||
1562 | <toString>, <valueOf> | ||
1563 | */ | ||
1564 | BigInteger.prototype.toJSValue = function() { | ||
1565 | return parseInt(this.toString(), 10); | ||
1566 | }; | ||
1567 | |||
1568 | var MAX_EXP = BigInteger(0x7FFFFFFF); | ||
1569 | // Constant: MAX_EXP | ||
1570 | // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647). | ||
1571 | BigInteger.MAX_EXP = MAX_EXP; | ||
1572 | |||
1573 | (function() { | ||
1574 | function makeUnary(fn) { | ||
1575 | return function(a) { | ||
1576 | return fn.call(BigInteger(a)); | ||
1577 | }; | ||
1578 | } | ||
1579 | |||
1580 | function makeBinary(fn) { | ||
1581 | return function(a, b) { | ||
1582 | return fn.call(BigInteger(a), BigInteger(b)); | ||
1583 | }; | ||
1584 | } | ||
1585 | |||
1586 | function makeTrinary(fn) { | ||
1587 | return function(a, b, c) { | ||
1588 | return fn.call(BigInteger(a), BigInteger(b), BigInteger(c)); | ||
1589 | }; | ||
1590 | } | ||
1591 | |||
1592 | (function() { | ||
1593 | var i, fn; | ||
1594 | var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(","); | ||
1595 | var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(","); | ||
1596 | var trinary = ["modPow"]; | ||
1597 | |||
1598 | for (i = 0; i < unary.length; i++) { | ||
1599 | fn = unary[i]; | ||
1600 | BigInteger[fn] = makeUnary(BigInteger.prototype[fn]); | ||
1601 | } | ||
1602 | |||
1603 | for (i = 0; i < binary.length; i++) { | ||
1604 | fn = binary[i]; | ||
1605 | BigInteger[fn] = makeBinary(BigInteger.prototype[fn]); | ||
1606 | } | ||
1607 | |||
1608 | for (i = 0; i < trinary.length; i++) { | ||
1609 | fn = trinary[i]; | ||
1610 | BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]); | ||
1611 | } | ||
1612 | |||
1613 | BigInteger.exp10 = function(x, n) { | ||
1614 | return BigInteger(x).exp10(n); | ||
1615 | }; | ||
1616 | })(); | ||
1617 | })(); | ||
1618 | |||
1619 | exports.BigInteger = BigInteger; | ||
1620 | })(typeof exports !== 'undefined' ? exports : this); | ||
diff --git a/src/js/entropy.js b/src/js/entropy.js index 0b76dcf..c28620a 100644 --- a/src/js/entropy.js +++ b/src/js/entropy.js | |||
@@ -222,1630 +222,3 @@ window.Entropy = new (function() { | |||
222 | }; | 222 | }; |
223 | 223 | ||
224 | })(); | 224 | })(); |
225 | |||
226 | |||
227 | // BigInteger library included here because | ||
228 | // only the entropy library depends on it | ||
229 | // so if entropy detection is removed so is the dependency | ||
230 | |||
231 | |||
232 | /* | ||
233 | JavaScript BigInteger library version 0.9.1 | ||
234 | http://silentmatt.com/biginteger/ | ||
235 | |||
236 | Copyright (c) 2009 Matthew Crumley <email@matthewcrumley.com> | ||
237 | Copyright (c) 2010,2011 by John Tobey <John.Tobey@gmail.com> | ||
238 | Licensed under the MIT license. | ||
239 | |||
240 | Support for arbitrary internal representation base was added by | ||
241 | Vitaly Magerya. | ||
242 | */ | ||
243 | |||
244 | /* | ||
245 | File: biginteger.js | ||
246 | |||
247 | Exports: | ||
248 | |||
249 | <BigInteger> | ||
250 | */ | ||
251 | (function(exports) { | ||
252 | "use strict"; | ||
253 | /* | ||
254 | Class: BigInteger | ||
255 | An arbitrarily-large integer. | ||
256 | |||
257 | <BigInteger> objects should be considered immutable. None of the "built-in" | ||
258 | methods modify *this* or their arguments. All properties should be | ||
259 | considered private. | ||
260 | |||
261 | All the methods of <BigInteger> instances can be called "statically". The | ||
262 | static versions are convenient if you don't already have a <BigInteger> | ||
263 | object. | ||
264 | |||
265 | As an example, these calls are equivalent. | ||
266 | |||
267 | > BigInteger(4).multiply(5); // returns BigInteger(20); | ||
268 | > BigInteger.multiply(4, 5); // returns BigInteger(20); | ||
269 | |||
270 | > var a = 42; | ||
271 | > var a = BigInteger.toJSValue("0b101010"); // Not completely useless... | ||
272 | */ | ||
273 | |||
274 | var CONSTRUCT = {}; // Unique token to call "private" version of constructor | ||
275 | |||
276 | /* | ||
277 | Constructor: BigInteger() | ||
278 | Convert a value to a <BigInteger>. | ||
279 | |||
280 | Although <BigInteger()> is the constructor for <BigInteger> objects, it is | ||
281 | best not to call it as a constructor. If *n* is a <BigInteger> object, it is | ||
282 | simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse> | ||
283 | without a radix argument. | ||
284 | |||
285 | > var n0 = BigInteger(); // Same as <BigInteger.ZERO> | ||
286 | > var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123 | ||
287 | > var n2 = BigInteger(123); // Create a new <BigInteger> with value 123 | ||
288 | > var n3 = BigInteger(n2); // Return n2, unchanged | ||
289 | |||
290 | The constructor form only takes an array and a sign. *n* must be an | ||
291 | array of numbers in little-endian order, where each digit is between 0 | ||
292 | and BigInteger.base. The second parameter sets the sign: -1 for | ||
293 | negative, +1 for positive, or 0 for zero. The array is *not copied and | ||
294 | may be modified*. If the array contains only zeros, the sign parameter | ||
295 | is ignored and is forced to zero. | ||
296 | |||
297 | > new BigInteger([5], -1): create a new BigInteger with value -5 | ||
298 | |||
299 | Parameters: | ||
300 | |||
301 | n - Value to convert to a <BigInteger>. | ||
302 | |||
303 | Returns: | ||
304 | |||
305 | A <BigInteger> value. | ||
306 | |||
307 | See Also: | ||
308 | |||
309 | <parse>, <BigInteger> | ||
310 | */ | ||
311 | function BigInteger(n, s, token) { | ||
312 | if (token !== CONSTRUCT) { | ||
313 | if (n instanceof BigInteger) { | ||
314 | return n; | ||
315 | } | ||
316 | else if (typeof n === "undefined") { | ||
317 | return ZERO; | ||
318 | } | ||
319 | return BigInteger.parse(n); | ||
320 | } | ||
321 | |||
322 | n = n || []; // Provide the nullary constructor for subclasses. | ||
323 | while (n.length && !n[n.length - 1]) { | ||
324 | --n.length; | ||
325 | } | ||
326 | this._d = n; | ||
327 | this._s = n.length ? (s || 1) : 0; | ||
328 | } | ||
329 | |||
330 | BigInteger._construct = function(n, s) { | ||
331 | return new BigInteger(n, s, CONSTRUCT); | ||
332 | }; | ||
333 | |||
334 | // Base-10 speedup hacks in parse, toString, exp10 and log functions | ||
335 | // require base to be a power of 10. 10^7 is the largest such power | ||
336 | // that won't cause a precision loss when digits are multiplied. | ||
337 | var BigInteger_base = 10000000; | ||
338 | var BigInteger_base_log10 = 7; | ||
339 | |||
340 | BigInteger.base = BigInteger_base; | ||
341 | BigInteger.base_log10 = BigInteger_base_log10; | ||
342 | |||
343 | var ZERO = new BigInteger([], 0, CONSTRUCT); | ||
344 | // Constant: ZERO | ||
345 | // <BigInteger> 0. | ||
346 | BigInteger.ZERO = ZERO; | ||
347 | |||
348 | var ONE = new BigInteger([1], 1, CONSTRUCT); | ||
349 | // Constant: ONE | ||
350 | // <BigInteger> 1. | ||
351 | BigInteger.ONE = ONE; | ||
352 | |||
353 | var M_ONE = new BigInteger(ONE._d, -1, CONSTRUCT); | ||
354 | // Constant: M_ONE | ||
355 | // <BigInteger> -1. | ||
356 | BigInteger.M_ONE = M_ONE; | ||
357 | |||
358 | // Constant: _0 | ||
359 | // Shortcut for <ZERO>. | ||
360 | BigInteger._0 = ZERO; | ||
361 | |||
362 | // Constant: _1 | ||
363 | // Shortcut for <ONE>. | ||
364 | BigInteger._1 = ONE; | ||
365 | |||
366 | /* | ||
367 | Constant: small | ||
368 | Array of <BigIntegers> from 0 to 36. | ||
369 | |||
370 | These are used internally for parsing, but useful when you need a "small" | ||
371 | <BigInteger>. | ||
372 | |||
373 | See Also: | ||
374 | |||
375 | <ZERO>, <ONE>, <_0>, <_1> | ||
376 | */ | ||
377 | BigInteger.small = [ | ||
378 | ZERO, | ||
379 | ONE, | ||
380 | /* Assuming BigInteger_base > 36 */ | ||
381 | new BigInteger( [2], 1, CONSTRUCT), | ||
382 | new BigInteger( [3], 1, CONSTRUCT), | ||
383 | new BigInteger( [4], 1, CONSTRUCT), | ||
384 | new BigInteger( [5], 1, CONSTRUCT), | ||
385 | new BigInteger( [6], 1, CONSTRUCT), | ||
386 | new BigInteger( [7], 1, CONSTRUCT), | ||
387 | new BigInteger( [8], 1, CONSTRUCT), | ||
388 | new BigInteger( [9], 1, CONSTRUCT), | ||
389 | new BigInteger([10], 1, CONSTRUCT), | ||
390 | new BigInteger([11], 1, CONSTRUCT), | ||
391 | new BigInteger([12], 1, CONSTRUCT), | ||
392 | new BigInteger([13], 1, CONSTRUCT), | ||
393 | new BigInteger([14], 1, CONSTRUCT), | ||
394 | new BigInteger([15], 1, CONSTRUCT), | ||
395 | new BigInteger([16], 1, CONSTRUCT), | ||
396 | new BigInteger([17], 1, CONSTRUCT), | ||
397 | new BigInteger([18], 1, CONSTRUCT), | ||
398 | new BigInteger([19], 1, CONSTRUCT), | ||
399 | new BigInteger([20], 1, CONSTRUCT), | ||
400 | new BigInteger([21], 1, CONSTRUCT), | ||
401 | new BigInteger([22], 1, CONSTRUCT), | ||
402 | new BigInteger([23], 1, CONSTRUCT), | ||
403 | new BigInteger([24], 1, CONSTRUCT), | ||
404 | new BigInteger([25], 1, CONSTRUCT), | ||
405 | new BigInteger([26], 1, CONSTRUCT), | ||
406 | new BigInteger([27], 1, CONSTRUCT), | ||
407 | new BigInteger([28], 1, CONSTRUCT), | ||
408 | new BigInteger([29], 1, CONSTRUCT), | ||
409 | new BigInteger([30], 1, CONSTRUCT), | ||
410 | new BigInteger([31], 1, CONSTRUCT), | ||
411 | new BigInteger([32], 1, CONSTRUCT), | ||
412 | new BigInteger([33], 1, CONSTRUCT), | ||
413 | new BigInteger([34], 1, CONSTRUCT), | ||
414 | new BigInteger([35], 1, CONSTRUCT), | ||
415 | new BigInteger([36], 1, CONSTRUCT) | ||
416 | ]; | ||
417 | |||
418 | // Used for parsing/radix conversion | ||
419 | BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split(""); | ||
420 | |||
421 | /* | ||
422 | Method: toString | ||
423 | Convert a <BigInteger> to a string. | ||
424 | |||
425 | When *base* is greater than 10, letters are upper case. | ||
426 | |||
427 | Parameters: | ||
428 | |||
429 | base - Optional base to represent the number in (default is base 10). | ||
430 | Must be between 2 and 36 inclusive, or an Error will be thrown. | ||
431 | |||
432 | Returns: | ||
433 | |||
434 | The string representation of the <BigInteger>. | ||
435 | */ | ||
436 | BigInteger.prototype.toString = function(base) { | ||
437 | base = +base || 10; | ||
438 | if (base < 2 || base > 36) { | ||
439 | throw new Error("illegal radix " + base + "."); | ||
440 | } | ||
441 | if (this._s === 0) { | ||
442 | return "0"; | ||
443 | } | ||
444 | if (base === 10) { | ||
445 | var str = this._s < 0 ? "-" : ""; | ||
446 | str += this._d[this._d.length - 1].toString(); | ||
447 | for (var i = this._d.length - 2; i >= 0; i--) { | ||
448 | var group = this._d[i].toString(); | ||
449 | while (group.length < BigInteger_base_log10) group = '0' + group; | ||
450 | str += group; | ||
451 | } | ||
452 | return str; | ||
453 | } | ||
454 | else { | ||
455 | var numerals = BigInteger.digits; | ||
456 | base = BigInteger.small[base]; | ||
457 | var sign = this._s; | ||
458 | |||
459 | var n = this.abs(); | ||
460 | var digits = []; | ||
461 | var digit; | ||
462 | |||
463 | while (n._s !== 0) { | ||
464 | var divmod = n.divRem(base); | ||
465 | n = divmod[0]; | ||
466 | digit = divmod[1]; | ||
467 | // TODO: This could be changed to unshift instead of reversing at the end. | ||
468 | // Benchmark both to compare speeds. | ||
469 | digits.push(numerals[digit.valueOf()]); | ||
470 | } | ||
471 | return (sign < 0 ? "-" : "") + digits.reverse().join(""); | ||
472 | } | ||
473 | }; | ||
474 | |||
475 | // Verify strings for parsing | ||
476 | BigInteger.radixRegex = [ | ||
477 | /^$/, | ||
478 | /^$/, | ||
479 | /^[01]*$/, | ||
480 | /^[012]*$/, | ||
481 | /^[0-3]*$/, | ||
482 | /^[0-4]*$/, | ||
483 | /^[0-5]*$/, | ||
484 | /^[0-6]*$/, | ||
485 | /^[0-7]*$/, | ||
486 | /^[0-8]*$/, | ||
487 | /^[0-9]*$/, | ||
488 | /^[0-9aA]*$/, | ||
489 | /^[0-9abAB]*$/, | ||
490 | /^[0-9abcABC]*$/, | ||
491 | /^[0-9a-dA-D]*$/, | ||
492 | /^[0-9a-eA-E]*$/, | ||
493 | /^[0-9a-fA-F]*$/, | ||
494 | /^[0-9a-gA-G]*$/, | ||
495 | /^[0-9a-hA-H]*$/, | ||
496 | /^[0-9a-iA-I]*$/, | ||
497 | /^[0-9a-jA-J]*$/, | ||
498 | /^[0-9a-kA-K]*$/, | ||
499 | /^[0-9a-lA-L]*$/, | ||
500 | /^[0-9a-mA-M]*$/, | ||
501 | /^[0-9a-nA-N]*$/, | ||
502 | /^[0-9a-oA-O]*$/, | ||
503 | /^[0-9a-pA-P]*$/, | ||
504 | /^[0-9a-qA-Q]*$/, | ||
505 | /^[0-9a-rA-R]*$/, | ||
506 | /^[0-9a-sA-S]*$/, | ||
507 | /^[0-9a-tA-T]*$/, | ||
508 | /^[0-9a-uA-U]*$/, | ||
509 | /^[0-9a-vA-V]*$/, | ||
510 | /^[0-9a-wA-W]*$/, | ||
511 | /^[0-9a-xA-X]*$/, | ||
512 | /^[0-9a-yA-Y]*$/, | ||
513 | /^[0-9a-zA-Z]*$/ | ||
514 | ]; | ||
515 | |||
516 | /* | ||
517 | Function: parse | ||
518 | Parse a string into a <BigInteger>. | ||
519 | |||
520 | *base* is optional but, if provided, must be from 2 to 36 inclusive. If | ||
521 | *base* is not provided, it will be guessed based on the leading characters | ||
522 | of *s* as follows: | ||
523 | |||
524 | - "0x" or "0X": *base* = 16 | ||
525 | - "0c" or "0C": *base* = 8 | ||
526 | - "0b" or "0B": *base* = 2 | ||
527 | - else: *base* = 10 | ||
528 | |||
529 | If no base is provided, or *base* is 10, the number can be in exponential | ||
530 | form. For example, these are all valid: | ||
531 | |||
532 | > BigInteger.parse("1e9"); // Same as "1000000000" | ||
533 | > BigInteger.parse("1.234*10^3"); // Same as 1234 | ||
534 | > BigInteger.parse("56789 * 10 ** -2"); // Same as 567 | ||
535 | |||
536 | If any characters fall outside the range defined by the radix, an exception | ||
537 | will be thrown. | ||
538 | |||
539 | Parameters: | ||
540 | |||
541 | s - The string to parse. | ||
542 | base - Optional radix (default is to guess based on *s*). | ||
543 | |||
544 | Returns: | ||
545 | |||
546 | a <BigInteger> instance. | ||
547 | */ | ||
548 | BigInteger.parse = function(s, base) { | ||
549 | // Expands a number in exponential form to decimal form. | ||
550 | // expandExponential("-13.441*10^5") === "1344100"; | ||
551 | // expandExponential("1.12300e-1") === "0.112300"; | ||
552 | // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000"; | ||
553 | function expandExponential(str) { | ||
554 | str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e"); | ||
555 | |||
556 | return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) { | ||
557 | c = +c; | ||
558 | var l = c < 0; | ||
559 | var i = n.length + c; | ||
560 | x = (l ? n : f).length; | ||
561 | c = ((c = Math.abs(c)) >= x ? c - x + l : 0); | ||
562 | var z = (new Array(c + 1)).join("0"); | ||
563 | var r = n + f; | ||
564 | return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : ""); | ||
565 | }); | ||
566 | } | ||
567 | |||
568 | s = s.toString(); | ||
569 | if (typeof base === "undefined" || +base === 10) { | ||
570 | s = expandExponential(s); | ||
571 | } | ||
572 | |||
573 | var prefixRE; | ||
574 | if (typeof base === "undefined") { | ||
575 | prefixRE = '0[xcb]'; | ||
576 | } | ||
577 | else if (base == 16) { | ||
578 | prefixRE = '0x'; | ||
579 | } | ||
580 | else if (base == 8) { | ||
581 | prefixRE = '0c'; | ||
582 | } | ||
583 | else if (base == 2) { | ||
584 | prefixRE = '0b'; | ||
585 | } | ||
586 | else { | ||
587 | prefixRE = ''; | ||
588 | } | ||
589 | var parts = new RegExp('^([+\\-]?)(' + prefixRE + ')?([0-9a-z]*)(?:\\.\\d*)?$', 'i').exec(s); | ||
590 | if (parts) { | ||
591 | var sign = parts[1] || "+"; | ||
592 | var baseSection = parts[2] || ""; | ||
593 | var digits = parts[3] || ""; | ||
594 | |||
595 | if (typeof base === "undefined") { | ||
596 | // Guess base | ||
597 | if (baseSection === "0x" || baseSection === "0X") { // Hex | ||
598 | base = 16; | ||
599 | } | ||
600 | else if (baseSection === "0c" || baseSection === "0C") { // Octal | ||
601 | base = 8; | ||
602 | } | ||
603 | else if (baseSection === "0b" || baseSection === "0B") { // Binary | ||
604 | base = 2; | ||
605 | } | ||
606 | else { | ||
607 | base = 10; | ||
608 | } | ||
609 | } | ||
610 | else if (base < 2 || base > 36) { | ||
611 | throw new Error("Illegal radix " + base + "."); | ||
612 | } | ||
613 | |||
614 | base = +base; | ||
615 | |||
616 | // Check for digits outside the range | ||
617 | if (!(BigInteger.radixRegex[base].test(digits))) { | ||
618 | throw new Error("Bad digit for radix " + base); | ||
619 | } | ||
620 | |||
621 | // Strip leading zeros, and convert to array | ||
622 | digits = digits.replace(/^0+/, "").split(""); | ||
623 | if (digits.length === 0) { | ||
624 | return ZERO; | ||
625 | } | ||
626 | |||
627 | // Get the sign (we know it's not zero) | ||
628 | sign = (sign === "-") ? -1 : 1; | ||
629 | |||
630 | // Optimize 10 | ||
631 | if (base == 10) { | ||
632 | var d = []; | ||
633 | while (digits.length >= BigInteger_base_log10) { | ||
634 | d.push(parseInt(digits.splice(digits.length-BigInteger.base_log10, BigInteger.base_log10).join(''), 10)); | ||
635 | } | ||
636 | d.push(parseInt(digits.join(''), 10)); | ||
637 | return new BigInteger(d, sign, CONSTRUCT); | ||
638 | } | ||
639 | |||
640 | // Do the conversion | ||
641 | var d = ZERO; | ||
642 | base = BigInteger.small[base]; | ||
643 | var small = BigInteger.small; | ||
644 | for (var i = 0; i < digits.length; i++) { | ||
645 | d = d.multiply(base).add(small[parseInt(digits[i], 36)]); | ||
646 | } | ||
647 | return new BigInteger(d._d, sign, CONSTRUCT); | ||
648 | } | ||
649 | else { | ||
650 | throw new Error("Invalid BigInteger format: " + s); | ||
651 | } | ||
652 | }; | ||
653 | |||
654 | /* | ||
655 | Function: add | ||
656 | Add two <BigIntegers>. | ||
657 | |||
658 | Parameters: | ||
659 | |||
660 | n - The number to add to *this*. Will be converted to a <BigInteger>. | ||
661 | |||
662 | Returns: | ||
663 | |||
664 | The numbers added together. | ||
665 | |||
666 | See Also: | ||
667 | |||
668 | <subtract>, <multiply>, <quotient>, <next> | ||
669 | */ | ||
670 | BigInteger.prototype.add = function(n) { | ||
671 | if (this._s === 0) { | ||
672 | return BigInteger(n); | ||
673 | } | ||
674 | |||
675 | n = BigInteger(n); | ||
676 | if (n._s === 0) { | ||
677 | return this; | ||
678 | } | ||
679 | if (this._s !== n._s) { | ||
680 | n = n.negate(); | ||
681 | return this.subtract(n); | ||
682 | } | ||
683 | |||
684 | var a = this._d; | ||
685 | var b = n._d; | ||
686 | var al = a.length; | ||
687 | var bl = b.length; | ||
688 | var sum = new Array(Math.max(al, bl) + 1); | ||
689 | var size = Math.min(al, bl); | ||
690 | var carry = 0; | ||
691 | var digit; | ||
692 | |||
693 | for (var i = 0; i < size; i++) { | ||
694 | digit = a[i] + b[i] + carry; | ||
695 | sum[i] = digit % BigInteger_base; | ||
696 | carry = (digit / BigInteger_base) | 0; | ||
697 | } | ||
698 | if (bl > al) { | ||
699 | a = b; | ||
700 | al = bl; | ||
701 | } | ||
702 | for (i = size; carry && i < al; i++) { | ||
703 | digit = a[i] + carry; | ||
704 | sum[i] = digit % BigInteger_base; | ||
705 | carry = (digit / BigInteger_base) | 0; | ||
706 | } | ||
707 | if (carry) { | ||
708 | sum[i] = carry; | ||
709 | } | ||
710 | |||
711 | for ( ; i < al; i++) { | ||
712 | sum[i] = a[i]; | ||
713 | } | ||
714 | |||
715 | return new BigInteger(sum, this._s, CONSTRUCT); | ||
716 | }; | ||
717 | |||
718 | /* | ||
719 | Function: negate | ||
720 | Get the additive inverse of a <BigInteger>. | ||
721 | |||
722 | Returns: | ||
723 | |||
724 | A <BigInteger> with the same magnatude, but with the opposite sign. | ||
725 | |||
726 | See Also: | ||
727 | |||
728 | <abs> | ||
729 | */ | ||
730 | BigInteger.prototype.negate = function() { | ||
731 | return new BigInteger(this._d, (-this._s) | 0, CONSTRUCT); | ||
732 | }; | ||
733 | |||
734 | /* | ||
735 | Function: abs | ||
736 | Get the absolute value of a <BigInteger>. | ||
737 | |||
738 | Returns: | ||
739 | |||
740 | A <BigInteger> with the same magnatude, but always positive (or zero). | ||
741 | |||
742 | See Also: | ||
743 | |||
744 | <negate> | ||
745 | */ | ||
746 | BigInteger.prototype.abs = function() { | ||
747 | return (this._s < 0) ? this.negate() : this; | ||
748 | }; | ||
749 | |||
750 | /* | ||
751 | Function: subtract | ||
752 | Subtract two <BigIntegers>. | ||
753 | |||
754 | Parameters: | ||
755 | |||
756 | n - The number to subtract from *this*. Will be converted to a <BigInteger>. | ||
757 | |||
758 | Returns: | ||
759 | |||
760 | The *n* subtracted from *this*. | ||
761 | |||
762 | See Also: | ||
763 | |||
764 | <add>, <multiply>, <quotient>, <prev> | ||
765 | */ | ||
766 | BigInteger.prototype.subtract = function(n) { | ||
767 | if (this._s === 0) { | ||
768 | return BigInteger(n).negate(); | ||
769 | } | ||
770 | |||
771 | n = BigInteger(n); | ||
772 | if (n._s === 0) { | ||
773 | return this; | ||
774 | } | ||
775 | if (this._s !== n._s) { | ||
776 | n = n.negate(); | ||
777 | return this.add(n); | ||
778 | } | ||
779 | |||
780 | var m = this; | ||
781 | // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a| | ||
782 | if (this._s < 0) { | ||
783 | m = new BigInteger(n._d, 1, CONSTRUCT); | ||
784 | n = new BigInteger(this._d, 1, CONSTRUCT); | ||
785 | } | ||
786 | |||
787 | // Both are positive => a - b | ||
788 | var sign = m.compareAbs(n); | ||
789 | if (sign === 0) { | ||
790 | return ZERO; | ||
791 | } | ||
792 | else if (sign < 0) { | ||
793 | // swap m and n | ||
794 | var t = n; | ||
795 | n = m; | ||
796 | m = t; | ||
797 | } | ||
798 | |||
799 | // a > b | ||
800 | var a = m._d; | ||
801 | var b = n._d; | ||
802 | var al = a.length; | ||
803 | var bl = b.length; | ||
804 | var diff = new Array(al); // al >= bl since a > b | ||
805 | var borrow = 0; | ||
806 | var i; | ||
807 | var digit; | ||
808 | |||
809 | for (i = 0; i < bl; i++) { | ||
810 | digit = a[i] - borrow - b[i]; | ||
811 | if (digit < 0) { | ||
812 | digit += BigInteger_base; | ||
813 | borrow = 1; | ||
814 | } | ||
815 | else { | ||
816 | borrow = 0; | ||
817 | } | ||
818 | diff[i] = digit; | ||
819 | } | ||
820 | for (i = bl; i < al; i++) { | ||
821 | digit = a[i] - borrow; | ||
822 | if (digit < 0) { | ||
823 | digit += BigInteger_base; | ||
824 | } | ||
825 | else { | ||
826 | diff[i++] = digit; | ||
827 | break; | ||
828 | } | ||
829 | diff[i] = digit; | ||
830 | } | ||
831 | for ( ; i < al; i++) { | ||
832 | diff[i] = a[i]; | ||
833 | } | ||
834 | |||
835 | return new BigInteger(diff, sign, CONSTRUCT); | ||
836 | }; | ||
837 | |||
838 | (function() { | ||
839 | function addOne(n, sign) { | ||
840 | var a = n._d; | ||
841 | var sum = a.slice(); | ||
842 | var carry = true; | ||
843 | var i = 0; | ||
844 | |||
845 | while (true) { | ||
846 | var digit = (a[i] || 0) + 1; | ||
847 | sum[i] = digit % BigInteger_base; | ||
848 | if (digit <= BigInteger_base - 1) { | ||
849 | break; | ||
850 | } | ||
851 | ++i; | ||
852 | } | ||
853 | |||
854 | return new BigInteger(sum, sign, CONSTRUCT); | ||
855 | } | ||
856 | |||
857 | function subtractOne(n, sign) { | ||
858 | var a = n._d; | ||
859 | var sum = a.slice(); | ||
860 | var borrow = true; | ||
861 | var i = 0; | ||
862 | |||
863 | while (true) { | ||
864 | var digit = (a[i] || 0) - 1; | ||
865 | if (digit < 0) { | ||
866 | sum[i] = digit + BigInteger_base; | ||
867 | } | ||
868 | else { | ||
869 | sum[i] = digit; | ||
870 | break; | ||
871 | } | ||
872 | ++i; | ||
873 | } | ||
874 | |||
875 | return new BigInteger(sum, sign, CONSTRUCT); | ||
876 | } | ||
877 | |||
878 | /* | ||
879 | Function: next | ||
880 | Get the next <BigInteger> (add one). | ||
881 | |||
882 | Returns: | ||
883 | |||
884 | *this* + 1. | ||
885 | |||
886 | See Also: | ||
887 | |||
888 | <add>, <prev> | ||
889 | */ | ||
890 | BigInteger.prototype.next = function() { | ||
891 | switch (this._s) { | ||
892 | case 0: | ||
893 | return ONE; | ||
894 | case -1: | ||
895 | return subtractOne(this, -1); | ||
896 | // case 1: | ||
897 | default: | ||
898 | return addOne(this, 1); | ||
899 | } | ||
900 | }; | ||
901 | |||
902 | /* | ||
903 | Function: prev | ||
904 | Get the previous <BigInteger> (subtract one). | ||
905 | |||
906 | Returns: | ||
907 | |||
908 | *this* - 1. | ||
909 | |||
910 | See Also: | ||
911 | |||
912 | <next>, <subtract> | ||
913 | */ | ||
914 | BigInteger.prototype.prev = function() { | ||
915 | switch (this._s) { | ||
916 | case 0: | ||
917 | return M_ONE; | ||
918 | case -1: | ||
919 | return addOne(this, -1); | ||
920 | // case 1: | ||
921 | default: | ||
922 | return subtractOne(this, 1); | ||
923 | } | ||
924 | }; | ||
925 | })(); | ||
926 | |||
927 | /* | ||
928 | Function: compareAbs | ||
929 | Compare the absolute value of two <BigIntegers>. | ||
930 | |||
931 | Calling <compareAbs> is faster than calling <abs> twice, then <compare>. | ||
932 | |||
933 | Parameters: | ||
934 | |||
935 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | ||
936 | |||
937 | Returns: | ||
938 | |||
939 | -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*. | ||
940 | |||
941 | See Also: | ||
942 | |||
943 | <compare>, <abs> | ||
944 | */ | ||
945 | BigInteger.prototype.compareAbs = function(n) { | ||
946 | if (this === n) { | ||
947 | return 0; | ||
948 | } | ||
949 | |||
950 | if (!(n instanceof BigInteger)) { | ||
951 | if (!isFinite(n)) { | ||
952 | return(isNaN(n) ? n : -1); | ||
953 | } | ||
954 | n = BigInteger(n); | ||
955 | } | ||
956 | |||
957 | if (this._s === 0) { | ||
958 | return (n._s !== 0) ? -1 : 0; | ||
959 | } | ||
960 | if (n._s === 0) { | ||
961 | return 1; | ||
962 | } | ||
963 | |||
964 | var l = this._d.length; | ||
965 | var nl = n._d.length; | ||
966 | if (l < nl) { | ||
967 | return -1; | ||
968 | } | ||
969 | else if (l > nl) { | ||
970 | return 1; | ||
971 | } | ||
972 | |||
973 | var a = this._d; | ||
974 | var b = n._d; | ||
975 | for (var i = l-1; i >= 0; i--) { | ||
976 | if (a[i] !== b[i]) { | ||
977 | return a[i] < b[i] ? -1 : 1; | ||
978 | } | ||
979 | } | ||
980 | |||
981 | return 0; | ||
982 | }; | ||
983 | |||
984 | /* | ||
985 | Function: compare | ||
986 | Compare two <BigIntegers>. | ||
987 | |||
988 | Parameters: | ||
989 | |||
990 | n - The number to compare to *this*. Will be converted to a <BigInteger>. | ||
991 | |||
992 | Returns: | ||
993 | |||
994 | -1, 0, or +1 if *this* is less than, equal to, or greater than *n*. | ||
995 | |||
996 | See Also: | ||
997 | |||
998 | <compareAbs>, <isPositive>, <isNegative>, <isUnit> | ||
999 | */ | ||
1000 | BigInteger.prototype.compare = function(n) { | ||
1001 | if (this === n) { | ||
1002 | return 0; | ||
1003 | } | ||
1004 | |||
1005 | n = BigInteger(n); | ||
1006 | |||
1007 | if (this._s === 0) { | ||
1008 | return -n._s; | ||
1009 | } | ||
1010 | |||
1011 | if (this._s === n._s) { // both positive or both negative | ||
1012 | var cmp = this.compareAbs(n); | ||
1013 | return cmp * this._s; | ||
1014 | } | ||
1015 | else { | ||
1016 | return this._s; | ||
1017 | } | ||
1018 | }; | ||
1019 | |||
1020 | /* | ||
1021 | Function: isUnit | ||
1022 | Return true iff *this* is either 1 or -1. | ||
1023 | |||
1024 | Returns: | ||
1025 | |||
1026 | true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>. | ||
1027 | |||
1028 | See Also: | ||
1029 | |||
1030 | <isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>, | ||
1031 | <BigInteger.ONE>, <BigInteger.M_ONE> | ||
1032 | */ | ||
1033 | BigInteger.prototype.isUnit = function() { | ||
1034 | return this === ONE || | ||
1035 | this === M_ONE || | ||
1036 | (this._d.length === 1 && this._d[0] === 1); | ||
1037 | }; | ||
1038 | |||
1039 | /* | ||
1040 | Function: multiply | ||
1041 | Multiply two <BigIntegers>. | ||
1042 | |||
1043 | Parameters: | ||
1044 | |||
1045 | n - The number to multiply *this* by. Will be converted to a | ||
1046 | <BigInteger>. | ||
1047 | |||
1048 | Returns: | ||
1049 | |||
1050 | The numbers multiplied together. | ||
1051 | |||
1052 | See Also: | ||
1053 | |||
1054 | <add>, <subtract>, <quotient>, <square> | ||
1055 | */ | ||
1056 | BigInteger.prototype.multiply = function(n) { | ||
1057 | // TODO: Consider adding Karatsuba multiplication for large numbers | ||
1058 | if (this._s === 0) { | ||
1059 | return ZERO; | ||
1060 | } | ||
1061 | |||
1062 | n = BigInteger(n); | ||
1063 | if (n._s === 0) { | ||
1064 | return ZERO; | ||
1065 | } | ||
1066 | if (this.isUnit()) { | ||
1067 | if (this._s < 0) { | ||
1068 | return n.negate(); | ||
1069 | } | ||
1070 | return n; | ||
1071 | } | ||
1072 | if (n.isUnit()) { | ||
1073 | if (n._s < 0) { | ||
1074 | return this.negate(); | ||
1075 | } | ||
1076 | return this; | ||
1077 | } | ||
1078 | if (this === n) { | ||
1079 | return this.square(); | ||
1080 | } | ||
1081 | |||
1082 | var r = (this._d.length >= n._d.length); | ||
1083 | var a = (r ? this : n)._d; // a will be longer than b | ||
1084 | var b = (r ? n : this)._d; | ||
1085 | var al = a.length; | ||
1086 | var bl = b.length; | ||
1087 | |||
1088 | var pl = al + bl; | ||
1089 | var partial = new Array(pl); | ||
1090 | var i; | ||
1091 | for (i = 0; i < pl; i++) { | ||
1092 | partial[i] = 0; | ||
1093 | } | ||
1094 | |||
1095 | for (i = 0; i < bl; i++) { | ||
1096 | var carry = 0; | ||
1097 | var bi = b[i]; | ||
1098 | var jlimit = al + i; | ||
1099 | var digit; | ||
1100 | for (var j = i; j < jlimit; j++) { | ||
1101 | digit = partial[j] + bi * a[j - i] + carry; | ||
1102 | carry = (digit / BigInteger_base) | 0; | ||
1103 | partial[j] = (digit % BigInteger_base) | 0; | ||
1104 | } | ||
1105 | if (carry) { | ||
1106 | digit = partial[j] + carry; | ||
1107 | carry = (digit / BigInteger_base) | 0; | ||
1108 | partial[j] = digit % BigInteger_base; | ||
1109 | } | ||
1110 | } | ||
1111 | return new BigInteger(partial, this._s * n._s, CONSTRUCT); | ||
1112 | }; | ||
1113 | |||
1114 | // Multiply a BigInteger by a single-digit native number | ||
1115 | // Assumes that this and n are >= 0 | ||
1116 | // This is not really intended to be used outside the library itself | ||
1117 | BigInteger.prototype.multiplySingleDigit = function(n) { | ||
1118 | if (n === 0 || this._s === 0) { | ||
1119 | return ZERO; | ||
1120 | } | ||
1121 | if (n === 1) { | ||
1122 | return this; | ||
1123 | } | ||
1124 | |||
1125 | var digit; | ||
1126 | if (this._d.length === 1) { | ||
1127 | digit = this._d[0] * n; | ||
1128 | if (digit >= BigInteger_base) { | ||
1129 | return new BigInteger([(digit % BigInteger_base)|0, | ||
1130 | (digit / BigInteger_base)|0], 1, CONSTRUCT); | ||
1131 | } | ||
1132 | return new BigInteger([digit], 1, CONSTRUCT); | ||
1133 | } | ||
1134 | |||
1135 | if (n === 2) { | ||
1136 | return this.add(this); | ||
1137 | } | ||
1138 | if (this.isUnit()) { | ||
1139 | return new BigInteger([n], 1, CONSTRUCT); | ||
1140 | } | ||
1141 | |||
1142 | var a = this._d; | ||
1143 | var al = a.length; | ||
1144 | |||
1145 | var pl = al + 1; | ||
1146 | var partial = new Array(pl); | ||
1147 | for (var i = 0; i < pl; i++) { | ||
1148 | partial[i] = 0; | ||
1149 | } | ||
1150 | |||
1151 | var carry = 0; | ||
1152 | for (var j = 0; j < al; j++) { | ||
1153 | digit = n * a[j] + carry; | ||
1154 | carry = (digit / BigInteger_base) | 0; | ||
1155 | partial[j] = (digit % BigInteger_base) | 0; | ||
1156 | } | ||
1157 | if (carry) { | ||
1158 | partial[j] = carry; | ||
1159 | } | ||
1160 | |||
1161 | return new BigInteger(partial, 1, CONSTRUCT); | ||
1162 | }; | ||
1163 | |||
1164 | /* | ||
1165 | Function: square | ||
1166 | Multiply a <BigInteger> by itself. | ||
1167 | |||
1168 | This is slightly faster than regular multiplication, since it removes the | ||
1169 | duplicated multiplcations. | ||
1170 | |||
1171 | Returns: | ||
1172 | |||
1173 | > this.multiply(this) | ||
1174 | |||
1175 | See Also: | ||
1176 | <multiply> | ||
1177 | */ | ||
1178 | BigInteger.prototype.square = function() { | ||
1179 | // Normally, squaring a 10-digit number would take 100 multiplications. | ||
1180 | // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated. | ||
1181 | // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies). | ||
1182 | // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org | ||
1183 | |||
1184 | if (this._s === 0) { | ||
1185 | return ZERO; | ||
1186 | } | ||
1187 | if (this.isUnit()) { | ||
1188 | return ONE; | ||
1189 | } | ||
1190 | |||
1191 | var digits = this._d; | ||
1192 | var length = digits.length; | ||
1193 | var imult1 = new Array(length + length + 1); | ||
1194 | var product, carry, k; | ||
1195 | var i; | ||
1196 | |||
1197 | // Calculate diagonal | ||
1198 | for (i = 0; i < length; i++) { | ||
1199 | k = i * 2; | ||
1200 | product = digits[i] * digits[i]; | ||
1201 | carry = (product / BigInteger_base) | 0; | ||
1202 | imult1[k] = product % BigInteger_base; | ||
1203 | imult1[k + 1] = carry; | ||
1204 | } | ||
1205 | |||
1206 | // Calculate repeating part | ||
1207 | for (i = 0; i < length; i++) { | ||
1208 | carry = 0; | ||
1209 | k = i * 2 + 1; | ||
1210 | for (var j = i + 1; j < length; j++, k++) { | ||
1211 | product = digits[j] * digits[i] * 2 + imult1[k] + carry; | ||
1212 | carry = (product / BigInteger_base) | 0; | ||
1213 | imult1[k] = product % BigInteger_base; | ||
1214 | } | ||
1215 | k = length + i; | ||
1216 | var digit = carry + imult1[k]; | ||
1217 | carry = (digit / BigInteger_base) | 0; | ||
1218 | imult1[k] = digit % BigInteger_base; | ||
1219 | imult1[k + 1] += carry; | ||
1220 | } | ||
1221 | |||
1222 | return new BigInteger(imult1, 1, CONSTRUCT); | ||
1223 | }; | ||
1224 | |||
1225 | /* | ||
1226 | Function: quotient | ||
1227 | Divide two <BigIntegers> and truncate towards zero. | ||
1228 | |||
1229 | <quotient> throws an exception if *n* is zero. | ||
1230 | |||
1231 | Parameters: | ||
1232 | |||
1233 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | ||
1234 | |||
1235 | Returns: | ||
1236 | |||
1237 | The *this* / *n*, truncated to an integer. | ||
1238 | |||
1239 | See Also: | ||
1240 | |||
1241 | <add>, <subtract>, <multiply>, <divRem>, <remainder> | ||
1242 | */ | ||
1243 | BigInteger.prototype.quotient = function(n) { | ||
1244 | return this.divRem(n)[0]; | ||
1245 | }; | ||
1246 | |||
1247 | /* | ||
1248 | Function: divide | ||
1249 | Deprecated synonym for <quotient>. | ||
1250 | */ | ||
1251 | BigInteger.prototype.divide = BigInteger.prototype.quotient; | ||
1252 | |||
1253 | /* | ||
1254 | Function: remainder | ||
1255 | Calculate the remainder of two <BigIntegers>. | ||
1256 | |||
1257 | <remainder> throws an exception if *n* is zero. | ||
1258 | |||
1259 | Parameters: | ||
1260 | |||
1261 | n - The remainder after *this* is divided *this* by *n*. Will be | ||
1262 | converted to a <BigInteger>. | ||
1263 | |||
1264 | Returns: | ||
1265 | |||
1266 | *this* % *n*. | ||
1267 | |||
1268 | See Also: | ||
1269 | |||
1270 | <divRem>, <quotient> | ||
1271 | */ | ||
1272 | BigInteger.prototype.remainder = function(n) { | ||
1273 | return this.divRem(n)[1]; | ||
1274 | }; | ||
1275 | |||
1276 | /* | ||
1277 | Function: divRem | ||
1278 | Calculate the integer quotient and remainder of two <BigIntegers>. | ||
1279 | |||
1280 | <divRem> throws an exception if *n* is zero. | ||
1281 | |||
1282 | Parameters: | ||
1283 | |||
1284 | n - The number to divide *this* by. Will be converted to a <BigInteger>. | ||
1285 | |||
1286 | Returns: | ||
1287 | |||
1288 | A two-element array containing the quotient and the remainder. | ||
1289 | |||
1290 | > a.divRem(b) | ||
1291 | |||
1292 | is exactly equivalent to | ||
1293 | |||
1294 | > [a.quotient(b), a.remainder(b)] | ||
1295 | |||
1296 | except it is faster, because they are calculated at the same time. | ||
1297 | |||
1298 | See Also: | ||
1299 | |||
1300 | <quotient>, <remainder> | ||
1301 | */ | ||
1302 | BigInteger.prototype.divRem = function(n) { | ||
1303 | n = BigInteger(n); | ||
1304 | if (n._s === 0) { | ||
1305 | throw new Error("Divide by zero"); | ||
1306 | } | ||
1307 | if (this._s === 0) { | ||
1308 | return [ZERO, ZERO]; | ||
1309 | } | ||
1310 | if (n._d.length === 1) { | ||
1311 | return this.divRemSmall(n._s * n._d[0]); | ||
1312 | } | ||
1313 | |||
1314 | // Test for easy cases -- |n1| <= |n2| | ||
1315 | switch (this.compareAbs(n)) { | ||
1316 | case 0: // n1 == n2 | ||
1317 | return [this._s === n._s ? ONE : M_ONE, ZERO]; | ||
1318 | case -1: // |n1| < |n2| | ||
1319 | return [ZERO, this]; | ||
1320 | } | ||
1321 | |||
1322 | var sign = this._s * n._s; | ||
1323 | var a = n.abs(); | ||
1324 | var b_digits = this._d; | ||
1325 | var b_index = b_digits.length; | ||
1326 | var digits = n._d.length; | ||
1327 | var quot = []; | ||
1328 | var guess; | ||
1329 | |||
1330 | var part = new BigInteger([], 0, CONSTRUCT); | ||
1331 | |||
1332 | while (b_index) { | ||
1333 | part._d.unshift(b_digits[--b_index]); | ||
1334 | part = new BigInteger(part._d, 1, CONSTRUCT); | ||
1335 | |||
1336 | if (part.compareAbs(n) < 0) { | ||
1337 | quot.push(0); | ||
1338 | continue; | ||
1339 | } | ||
1340 | if (part._s === 0) { | ||
1341 | guess = 0; | ||
1342 | } | ||
1343 | else { | ||
1344 | var xlen = part._d.length, ylen = a._d.length; | ||
1345 | var highx = part._d[xlen-1]*BigInteger_base + part._d[xlen-2]; | ||
1346 | var highy = a._d[ylen-1]*BigInteger_base + a._d[ylen-2]; | ||
1347 | if (part._d.length > a._d.length) { | ||
1348 | // The length of part._d can either match a._d length, | ||
1349 | // or exceed it by one. | ||
1350 | highx = (highx+1)*BigInteger_base; | ||
1351 | } | ||
1352 | guess = Math.ceil(highx/highy); | ||
1353 | } | ||
1354 | do { | ||
1355 | var check = a.multiplySingleDigit(guess); | ||
1356 | if (check.compareAbs(part) <= 0) { | ||
1357 | break; | ||
1358 | } | ||
1359 | guess--; | ||
1360 | } while (guess); | ||
1361 | |||
1362 | quot.push(guess); | ||
1363 | if (!guess) { | ||
1364 | continue; | ||
1365 | } | ||
1366 | var diff = part.subtract(check); | ||
1367 | part._d = diff._d.slice(); | ||
1368 | } | ||
1369 | |||
1370 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), | ||
1371 | new BigInteger(part._d, this._s, CONSTRUCT)]; | ||
1372 | }; | ||
1373 | |||
1374 | // Throws an exception if n is outside of (-BigInteger.base, -1] or | ||
1375 | // [1, BigInteger.base). It's not necessary to call this, since the | ||
1376 | // other division functions will call it if they are able to. | ||
1377 | BigInteger.prototype.divRemSmall = function(n) { | ||
1378 | var r; | ||
1379 | n = +n; | ||
1380 | if (n === 0) { | ||
1381 | throw new Error("Divide by zero"); | ||
1382 | } | ||
1383 | |||
1384 | var n_s = n < 0 ? -1 : 1; | ||
1385 | var sign = this._s * n_s; | ||
1386 | n = Math.abs(n); | ||
1387 | |||
1388 | if (n < 1 || n >= BigInteger_base) { | ||
1389 | throw new Error("Argument out of range"); | ||
1390 | } | ||
1391 | |||
1392 | if (this._s === 0) { | ||
1393 | return [ZERO, ZERO]; | ||
1394 | } | ||
1395 | |||
1396 | if (n === 1 || n === -1) { | ||
1397 | return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign, CONSTRUCT), ZERO]; | ||
1398 | } | ||
1399 | |||
1400 | // 2 <= n < BigInteger_base | ||
1401 | |||
1402 | // divide a single digit by a single digit | ||
1403 | if (this._d.length === 1) { | ||
1404 | var q = new BigInteger([(this._d[0] / n) | 0], 1, CONSTRUCT); | ||
1405 | r = new BigInteger([(this._d[0] % n) | 0], 1, CONSTRUCT); | ||
1406 | if (sign < 0) { | ||
1407 | q = q.negate(); | ||
1408 | } | ||
1409 | if (this._s < 0) { | ||
1410 | r = r.negate(); | ||
1411 | } | ||
1412 | return [q, r]; | ||
1413 | } | ||
1414 | |||
1415 | var digits = this._d.slice(); | ||
1416 | var quot = new Array(digits.length); | ||
1417 | var part = 0; | ||
1418 | var diff = 0; | ||
1419 | var i = 0; | ||
1420 | var guess; | ||
1421 | |||
1422 | while (digits.length) { | ||
1423 | part = part * BigInteger_base + digits[digits.length - 1]; | ||
1424 | if (part < n) { | ||
1425 | quot[i++] = 0; | ||
1426 | digits.pop(); | ||
1427 | diff = BigInteger_base * diff + part; | ||
1428 | continue; | ||
1429 | } | ||
1430 | if (part === 0) { | ||
1431 | guess = 0; | ||
1432 | } | ||
1433 | else { | ||
1434 | guess = (part / n) | 0; | ||
1435 | } | ||
1436 | |||
1437 | var check = n * guess; | ||
1438 | diff = part - check; | ||
1439 | quot[i++] = guess; | ||
1440 | if (!guess) { | ||
1441 | digits.pop(); | ||
1442 | continue; | ||
1443 | } | ||
1444 | |||
1445 | digits.pop(); | ||
1446 | part = diff; | ||
1447 | } | ||
1448 | |||
1449 | r = new BigInteger([diff], 1, CONSTRUCT); | ||
1450 | if (this._s < 0) { | ||
1451 | r = r.negate(); | ||
1452 | } | ||
1453 | return [new BigInteger(quot.reverse(), sign, CONSTRUCT), r]; | ||
1454 | }; | ||
1455 | |||
1456 | /* | ||
1457 | Function: isEven | ||
1458 | Return true iff *this* is divisible by two. | ||
1459 | |||
1460 | Note that <BigInteger.ZERO> is even. | ||
1461 | |||
1462 | Returns: | ||
1463 | |||
1464 | true if *this* is even, false otherwise. | ||
1465 | |||
1466 | See Also: | ||
1467 | |||
1468 | <isOdd> | ||
1469 | */ | ||
1470 | BigInteger.prototype.isEven = function() { | ||
1471 | var digits = this._d; | ||
1472 | return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0; | ||
1473 | }; | ||
1474 | |||
1475 | /* | ||
1476 | Function: isOdd | ||
1477 | Return true iff *this* is not divisible by two. | ||
1478 | |||
1479 | Returns: | ||
1480 | |||
1481 | true if *this* is odd, false otherwise. | ||
1482 | |||
1483 | See Also: | ||
1484 | |||
1485 | <isEven> | ||
1486 | */ | ||
1487 | BigInteger.prototype.isOdd = function() { | ||
1488 | return !this.isEven(); | ||
1489 | }; | ||
1490 | |||
1491 | /* | ||
1492 | Function: sign | ||
1493 | Get the sign of a <BigInteger>. | ||
1494 | |||
1495 | Returns: | ||
1496 | |||
1497 | * -1 if *this* < 0 | ||
1498 | * 0 if *this* == 0 | ||
1499 | * +1 if *this* > 0 | ||
1500 | |||
1501 | See Also: | ||
1502 | |||
1503 | <isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO> | ||
1504 | */ | ||
1505 | BigInteger.prototype.sign = function() { | ||
1506 | return this._s; | ||
1507 | }; | ||
1508 | |||
1509 | /* | ||
1510 | Function: isPositive | ||
1511 | Return true iff *this* > 0. | ||
1512 | |||
1513 | Returns: | ||
1514 | |||
1515 | true if *this*.compare(<BigInteger.ZERO>) == 1. | ||
1516 | |||
1517 | See Also: | ||
1518 | |||
1519 | <sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO> | ||
1520 | */ | ||
1521 | BigInteger.prototype.isPositive = function() { | ||
1522 | return this._s > 0; | ||
1523 | }; | ||
1524 | |||
1525 | /* | ||
1526 | Function: isNegative | ||
1527 | Return true iff *this* < 0. | ||
1528 | |||
1529 | Returns: | ||
1530 | |||
1531 | true if *this*.compare(<BigInteger.ZERO>) == -1. | ||
1532 | |||
1533 | See Also: | ||
1534 | |||
1535 | <sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO> | ||
1536 | */ | ||
1537 | BigInteger.prototype.isNegative = function() { | ||
1538 | return this._s < 0; | ||
1539 | }; | ||
1540 | |||
1541 | /* | ||
1542 | Function: isZero | ||
1543 | Return true iff *this* == 0. | ||
1544 | |||
1545 | Returns: | ||
1546 | |||
1547 | true if *this*.compare(<BigInteger.ZERO>) == 0. | ||
1548 | |||
1549 | See Also: | ||
1550 | |||
1551 | <sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO> | ||
1552 | */ | ||
1553 | BigInteger.prototype.isZero = function() { | ||
1554 | return this._s === 0; | ||
1555 | }; | ||
1556 | |||
1557 | /* | ||
1558 | Function: exp10 | ||
1559 | Multiply a <BigInteger> by a power of 10. | ||
1560 | |||
1561 | This is equivalent to, but faster than | ||
1562 | |||
1563 | > if (n >= 0) { | ||
1564 | > return this.multiply(BigInteger("1e" + n)); | ||
1565 | > } | ||
1566 | > else { // n <= 0 | ||
1567 | > return this.quotient(BigInteger("1e" + -n)); | ||
1568 | > } | ||
1569 | |||
1570 | Parameters: | ||
1571 | |||
1572 | n - The power of 10 to multiply *this* by. *n* is converted to a | ||
1573 | javascipt number and must be no greater than <BigInteger.MAX_EXP> | ||
1574 | (0x7FFFFFFF), or an exception will be thrown. | ||
1575 | |||
1576 | Returns: | ||
1577 | |||
1578 | *this* * (10 ** *n*), truncated to an integer if necessary. | ||
1579 | |||
1580 | See Also: | ||
1581 | |||
1582 | <pow>, <multiply> | ||
1583 | */ | ||
1584 | BigInteger.prototype.exp10 = function(n) { | ||
1585 | n = +n; | ||
1586 | if (n === 0) { | ||
1587 | return this; | ||
1588 | } | ||
1589 | if (Math.abs(n) > Number(MAX_EXP)) { | ||
1590 | throw new Error("exponent too large in BigInteger.exp10"); | ||
1591 | } | ||
1592 | // Optimization for this == 0. This also keeps us from having to trim zeros in the positive n case | ||
1593 | if (this._s === 0) { | ||
1594 | return ZERO; | ||
1595 | } | ||
1596 | if (n > 0) { | ||
1597 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | ||
1598 | |||
1599 | for (; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | ||
1600 | k._d.unshift(0); | ||
1601 | } | ||
1602 | if (n == 0) | ||
1603 | return k; | ||
1604 | k._s = 1; | ||
1605 | k = k.multiplySingleDigit(Math.pow(10, n)); | ||
1606 | return (this._s < 0 ? k.negate() : k); | ||
1607 | } else if (-n >= this._d.length*BigInteger_base_log10) { | ||
1608 | return ZERO; | ||
1609 | } else { | ||
1610 | var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT); | ||
1611 | |||
1612 | for (n = -n; n >= BigInteger_base_log10; n -= BigInteger_base_log10) { | ||
1613 | k._d.shift(); | ||
1614 | } | ||
1615 | return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0]; | ||
1616 | } | ||
1617 | }; | ||
1618 | |||
1619 | /* | ||
1620 | Function: pow | ||
1621 | Raise a <BigInteger> to a power. | ||
1622 | |||
1623 | In this implementation, 0**0 is 1. | ||
1624 | |||
1625 | Parameters: | ||
1626 | |||
1627 | n - The exponent to raise *this* by. *n* must be no greater than | ||
1628 | <BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown. | ||
1629 | |||
1630 | Returns: | ||
1631 | |||
1632 | *this* raised to the *nth* power. | ||
1633 | |||
1634 | See Also: | ||
1635 | |||
1636 | <modPow> | ||
1637 | */ | ||
1638 | BigInteger.prototype.pow = function(n) { | ||
1639 | if (this.isUnit()) { | ||
1640 | if (this._s > 0) { | ||
1641 | return this; | ||
1642 | } | ||
1643 | else { | ||
1644 | return BigInteger(n).isOdd() ? this : this.negate(); | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | n = BigInteger(n); | ||
1649 | if (n._s === 0) { | ||
1650 | return ONE; | ||
1651 | } | ||
1652 | else if (n._s < 0) { | ||
1653 | if (this._s === 0) { | ||
1654 | throw new Error("Divide by zero"); | ||
1655 | } | ||
1656 | else { | ||
1657 | return ZERO; | ||
1658 | } | ||
1659 | } | ||
1660 | if (this._s === 0) { | ||
1661 | return ZERO; | ||
1662 | } | ||
1663 | if (n.isUnit()) { | ||
1664 | return this; | ||
1665 | } | ||
1666 | |||
1667 | if (n.compareAbs(MAX_EXP) > 0) { | ||
1668 | throw new Error("exponent too large in BigInteger.pow"); | ||
1669 | } | ||
1670 | var x = this; | ||
1671 | var aux = ONE; | ||
1672 | var two = BigInteger.small[2]; | ||
1673 | |||
1674 | while (n.isPositive()) { | ||
1675 | if (n.isOdd()) { | ||
1676 | aux = aux.multiply(x); | ||
1677 | if (n.isUnit()) { | ||
1678 | return aux; | ||
1679 | } | ||
1680 | } | ||
1681 | x = x.square(); | ||
1682 | n = n.quotient(two); | ||
1683 | } | ||
1684 | |||
1685 | return aux; | ||
1686 | }; | ||
1687 | |||
1688 | /* | ||
1689 | Function: modPow | ||
1690 | Raise a <BigInteger> to a power (mod m). | ||
1691 | |||
1692 | Because it is reduced by a modulus, <modPow> is not limited by | ||
1693 | <BigInteger.MAX_EXP> like <pow>. | ||
1694 | |||
1695 | Parameters: | ||
1696 | |||
1697 | exponent - The exponent to raise *this* by. Must be positive. | ||
1698 | modulus - The modulus. | ||
1699 | |||
1700 | Returns: | ||
1701 | |||
1702 | *this* ^ *exponent* (mod *modulus*). | ||
1703 | |||
1704 | See Also: | ||
1705 | |||
1706 | <pow>, <mod> | ||
1707 | */ | ||
1708 | BigInteger.prototype.modPow = function(exponent, modulus) { | ||
1709 | var result = ONE; | ||
1710 | var base = this; | ||
1711 | |||
1712 | while (exponent.isPositive()) { | ||
1713 | if (exponent.isOdd()) { | ||
1714 | result = result.multiply(base).remainder(modulus); | ||
1715 | } | ||
1716 | |||
1717 | exponent = exponent.quotient(BigInteger.small[2]); | ||
1718 | if (exponent.isPositive()) { | ||
1719 | base = base.square().remainder(modulus); | ||
1720 | } | ||
1721 | } | ||
1722 | |||
1723 | return result; | ||
1724 | }; | ||
1725 | |||
1726 | /* | ||
1727 | Function: log | ||
1728 | Get the natural logarithm of a <BigInteger> as a native JavaScript number. | ||
1729 | |||
1730 | This is equivalent to | ||
1731 | |||
1732 | > Math.log(this.toJSValue()) | ||
1733 | |||
1734 | but handles values outside of the native number range. | ||
1735 | |||
1736 | Returns: | ||
1737 | |||
1738 | log( *this* ) | ||
1739 | |||
1740 | See Also: | ||
1741 | |||
1742 | <toJSValue> | ||
1743 | */ | ||
1744 | BigInteger.prototype.log = function() { | ||
1745 | switch (this._s) { | ||
1746 | case 0: return -Infinity; | ||
1747 | case -1: return NaN; | ||
1748 | default: // Fall through. | ||
1749 | } | ||
1750 | |||
1751 | var l = this._d.length; | ||
1752 | |||
1753 | if (l*BigInteger_base_log10 < 30) { | ||
1754 | return Math.log(this.valueOf()); | ||
1755 | } | ||
1756 | |||
1757 | var N = Math.ceil(30/BigInteger_base_log10); | ||
1758 | var firstNdigits = this._d.slice(l - N); | ||
1759 | return Math.log((new BigInteger(firstNdigits, 1, CONSTRUCT)).valueOf()) + (l - N) * Math.log(BigInteger_base); | ||
1760 | }; | ||
1761 | |||
1762 | /* | ||
1763 | Function: valueOf | ||
1764 | Convert a <BigInteger> to a native JavaScript integer. | ||
1765 | |||
1766 | This is called automatically by JavaScipt to convert a <BigInteger> to a | ||
1767 | native value. | ||
1768 | |||
1769 | Returns: | ||
1770 | |||
1771 | > parseInt(this.toString(), 10) | ||
1772 | |||
1773 | See Also: | ||
1774 | |||
1775 | <toString>, <toJSValue> | ||
1776 | */ | ||
1777 | BigInteger.prototype.valueOf = function() { | ||
1778 | return parseInt(this.toString(), 10); | ||
1779 | }; | ||
1780 | |||
1781 | /* | ||
1782 | Function: toJSValue | ||
1783 | Convert a <BigInteger> to a native JavaScript integer. | ||
1784 | |||
1785 | This is the same as valueOf, but more explicitly named. | ||
1786 | |||
1787 | Returns: | ||
1788 | |||
1789 | > parseInt(this.toString(), 10) | ||
1790 | |||
1791 | See Also: | ||
1792 | |||
1793 | <toString>, <valueOf> | ||
1794 | */ | ||
1795 | BigInteger.prototype.toJSValue = function() { | ||
1796 | return parseInt(this.toString(), 10); | ||
1797 | }; | ||
1798 | |||
1799 | var MAX_EXP = BigInteger(0x7FFFFFFF); | ||
1800 | // Constant: MAX_EXP | ||
1801 | // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647). | ||
1802 | BigInteger.MAX_EXP = MAX_EXP; | ||
1803 | |||
1804 | (function() { | ||
1805 | function makeUnary(fn) { | ||
1806 | return function(a) { | ||
1807 | return fn.call(BigInteger(a)); | ||
1808 | }; | ||
1809 | } | ||
1810 | |||
1811 | function makeBinary(fn) { | ||
1812 | return function(a, b) { | ||
1813 | return fn.call(BigInteger(a), BigInteger(b)); | ||
1814 | }; | ||
1815 | } | ||
1816 | |||
1817 | function makeTrinary(fn) { | ||
1818 | return function(a, b, c) { | ||
1819 | return fn.call(BigInteger(a), BigInteger(b), BigInteger(c)); | ||
1820 | }; | ||
1821 | } | ||
1822 | |||
1823 | (function() { | ||
1824 | var i, fn; | ||
1825 | var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(","); | ||
1826 | var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(","); | ||
1827 | var trinary = ["modPow"]; | ||
1828 | |||
1829 | for (i = 0; i < unary.length; i++) { | ||
1830 | fn = unary[i]; | ||
1831 | BigInteger[fn] = makeUnary(BigInteger.prototype[fn]); | ||
1832 | } | ||
1833 | |||
1834 | for (i = 0; i < binary.length; i++) { | ||
1835 | fn = binary[i]; | ||
1836 | BigInteger[fn] = makeBinary(BigInteger.prototype[fn]); | ||
1837 | } | ||
1838 | |||
1839 | for (i = 0; i < trinary.length; i++) { | ||
1840 | fn = trinary[i]; | ||
1841 | BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]); | ||
1842 | } | ||
1843 | |||
1844 | BigInteger.exp10 = function(x, n) { | ||
1845 | return BigInteger(x).exp10(n); | ||
1846 | }; | ||
1847 | })(); | ||
1848 | })(); | ||
1849 | |||
1850 | exports.BigInteger = BigInteger; | ||
1851 | })(typeof exports !== 'undefined' ? exports : this); | ||