/*
* Detects entropy from a string.
*
* Formats include:
* binary [0-1]
* base 6 [0-5]
* dice 6 [1-6]
* decimal [0-9]
* hexadecimal [0-9A-F]
* card [A2-9TJQK][CDHS]
*
* Automatically uses lowest entropy to avoid issues such as interpretting 0101
* as hexadecimal which would be 16 bits when really it's only 4 bits of binary
* entropy.
*/
window.Entropy = new (function() {
var TWO = new BigInteger(2);
// matchers returns an array of the matched events for each type of entropy.
// eg
// matchers.binary("010") returns ["0", "1", "0"]
// matchers.binary("a10") returns ["1", "0"]
// matchers.hex("a10") returns ["a", "1", "0"]
var matchers = {
binary: function(str) {
return str.match(/[0-1]/gi) || [];
},
base6: function(str) {
return str.match(/[0-5]/gi) || [];
},
dice: function(str) {
return str.match(/[1-6]/gi) || []; // ie dice numbers
},
base10: function(str) {
return str.match(/[0-9]/gi) || [];
},
hex: function(str) {
return str.match(/[0-9A-F]/gi) || [];
},
card: function(str) {
// Format is NumberSuit, eg
// AH ace of hearts
// 8C eight of clubs
// TD ten of diamonds
// JS jack of spades
// QH queen of hearts
// KC king of clubs
return str.match(/([A2-9TJQK][CDHS])/gi) || [];
}
}
// Convert array of cards from ["ac", "4d", "ks"]
// to numbers between 0 and 51 [0, 16, 51]
function convertCardsToInts(cards) {
var ints = [];
var values = "a23456789tjqk";
var suits = "cdhs";
for (var i=0; i<cards.length; i++) {
var card = cards[i].toLowerCase();
var value = card[0];
var suit = card[1];
var asInt = 13 * suits.indexOf(suit) + values.indexOf(value);
ints.push(asInt);
}
return ints;
}
this.fromString = function(rawEntropyStr) {
// Find type of entropy being used (binary, hex, dice etc)
var base = getBase(rawEntropyStr);
// Convert dice to base6 entropy (ie 1-6 to 0-5)
// This is done by changing all 6s to 0s
if (base.str == "dice") {
var newParts = [];
var newInts = [];
for (var i=0; i<base.parts.length; i++) {
var c = base.parts[i];
if ("12345".indexOf(c) > -1) {
newParts[i] = base.parts[i];
newInts[i] = base.ints[i];
}
else {
newParts[i] = "0";
newInts[i] = 0;
}
}
base.str = "base 6 (dice)";
base.ints = newInts;
base.parts = newParts;
base.matcher = matchers.base6;
}
// Detect empty entropy
if (base.parts.length == 0) {
return {
binaryStr: "",
cleanStr: "",
cleanHtml: "",
base: base,
};
}
// Convert base.ints to BigInteger.
// Due to using unusual bases, eg cards of base52, this is not as simple as
// using BigInteger.parse()
var entropyInt = BigInteger.ZERO;
for (var i=base.ints.length-1; i>=0; i--) {
var thisInt = BigInteger.parse(base.ints[i]);
var power = (base.ints.length - 1) - i;
var additionalEntropy = BigInteger.parse(base.asInt).pow(power).multiply(thisInt);
entropyInt = entropyInt.add(additionalEntropy);
}
// Convert entropy to binary
var entropyBin = entropyInt.toString(2);
// If the first integer is small, it must be padded with zeros.
// Otherwise the chance of the first bit being 1 is 100%, which is
// obviously incorrect.
// This is not perfect for non-2^n bases.
var expectedBits = Math.floor(base.parts.length * Math.log2(base.asInt));
while (entropyBin.length < expectedBits) {
entropyBin = "0" + entropyBin;
}
// Calculate the number of bits per event
var bitsPerEvent = Math.log2(base.asInt);
// Cards binary must be handled differently, since they're not replaced
if (base.asInt == 52) {
var cardEntropy = processCardEntropy(base.parts);
entropyBin = cardEntropy.binaryStr;
bitsPerEvent = cardEntropy.bitsPerEvent;
}
// Supply a 'filtered' entropy string for display purposes
var entropyClean = base.parts.join("");
var entropyHtml = base.parts.join("");
if (base.asInt == 52) {
entropyClean = base.parts.join(" ").toUpperCase();
entropyClean = entropyClean.replace(/C/g, "\u2663");
entropyClean = entropyClean.replace(/D/g, "\u2666");
entropyClean = entropyClean.replace(/H/g, "\u2665");
entropyClean = entropyClean.replace(/S/g, "\u2660");
entropyHtml = base.parts.join(" ").toUpperCase();
entropyHtml = entropyHtml.replace(/C/g, "<span class='card-suit club'>\u2663</span>");
entropyHtml = entropyHtml.replace(/D/g, "<span class='card-suit diamond'>\u2666</span>");
entropyHtml = entropyHtml.replace(/H/g, "<span class='card-suit heart'>\u2665</span>");
entropyHtml = entropyHtml.replace(/S/g, "<span class='card-suit spade'>\u2660</span>");
}
// Return the result
var e = {
binaryStr: entropyBin,
cleanStr: entropyClean,
cleanHtml: entropyHtml,
bitsPerEvent: bitsPerEvent,
base: base,
}
return e;
}
function getSortedDeck() {
var s = [];
var suits = "CDHS";
var values = "A23456789TJQK";
for (var i=0; i<suits.length; i++) {
for (var j=0; j<values.length; j++) {
s.push(values[j]+suits[i]);
}
}
return s;
}
function getBase(str) {
// Need to get the lowest base for the supplied entropy.
// This prevents interpreting, say, dice rolls as hexadecimal.
var binaryMatches = matchers.binary(str);
var hexMatches = matchers.hex(str);
// Find the lowest base that can be used, whilst ignoring any irrelevant chars
if (binaryMatches.length == hexMatches.length && hexMatches.length > 0) {
var ints = binaryMatches.map(function(i) { return parseInt(i, 2) });
return {
ints: ints,
parts: binaryMatches,
matcher: matchers.binary,
asInt: 2,
str: "binary",
}
}
var cardMatches = matchers.card(str);
if (cardMatches.length >= hexMatches.length / 2) {
var ints = convertCardsToInts(cardMatches);
return {
ints: ints,
parts: cardMatches,
matcher: matchers.card,
asInt: 52,
str: "card",
}
}
var diceMatches = matchers.dice(str);
if (diceMatches.length == hexMatches.length && hexMatches.length > 0) {
var ints = diceMatches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: diceMatches,
matcher: matchers.dice,
asInt: 6,
str: "dice",
}
}
var base6Matches = matchers.base6(str);
if (base6Matches.length == hexMatches.length && hexMatches.length > 0) {
var ints = base6Matches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: base6Matches,
matcher: matchers.base6,
asInt: 6,
str: "base 6",
}
}
var base10Matches = matchers.base10(str);
if (base10Matches.length == hexMatches.length && hexMatches.length > 0) {
var ints = base10Matches.map(function(i) { return parseInt(i) });
return {
ints: ints,
parts: base10Matches,
matcher: matchers.base10,
asInt: 10,
str: "base 10",
}
}
var ints = hexMatches.map(function(i) { return parseInt(i, 16) });
return {
ints: ints,
parts: hexMatches,
matcher: matchers.hex,
asInt: 16,
str: "hexadecimal",
}
}
// Assume cards are NOT replaced.
// Additional entropy decreases as more cards are used. This means
// total possible entropy is measured using n!, not base^n.
// eg the second last card can be only one of two, not one of fifty two
// so the added entropy for that card is only one bit at most
function processCardEntropy(cards) {
// Track how many instances of each card have been used, and thus
// how many decks are in use.
var cardCounts = {};
var numberOfDecks = 0;
// Work out number of decks by max(duplicates)
for (var i=0; i<cards.length; i++) {
// Get the card that was drawn
var cardLower = cards[i];
var card = cardLower.toUpperCase();
// Initialize the count for this card if needed
if (!(card in cardCounts)) {
cardCounts[card] = 0;
}
cardCounts[card] += 1;
// See if this is max(duplicates)
if (cardCounts[card] > numberOfDecks) {
numberOfDecks = cardCounts[card];
}
}
// Work out the total number of bits for this many decks
// See http://crypto.stackexchange.com/q/41886
var gainedBits = 0;
// Equivalent of Math.log2(factorial(52*numberOfDecks))
// which becomes infinity for numberOfDecks > 4
for (var i=1; i<=52*numberOfDecks; i++) {
gainedBits = gainedBits + Math.log2(i);
}
var lostBits = 52 * Math.log2(factorial(numberOfDecks));
var maxBits = gainedBits - lostBits;
// Convert the drawn cards to a binary representation.
// The exact technique for doing this is unclear.
// See
// http://crypto.stackexchange.com/a/41896
// "I even doubt that this is well defined (only the average entropy
// is, I believe)."
// See
// https://github.com/iancoleman/bip39/issues/33#issuecomment-263021856
// "The binary representation can be the first log(permutations,2) bits
// of the sha-2 hash of the normalized deck string."
//
// In this specific implementation, the first N bits of the hash of the
// normalized cards string is being used. Uppercase, no spaces; eg
// sha256("AH8DQSTC2H")
var totalCards = numberOfDecks * 52;
var percentUsed = cards.length / totalCards;
// Calculate the average number of bits of entropy for the number of
// cards drawn.
var numberOfBits = Math.floor(maxBits * percentUsed);
// Create a normalized string of the selected cards
var normalizedCards = cards.join("").toUpperCase();
// Convert to binary using the SHA256 hash of the normalized cards.
// If the number of bits is more than 256, multiple rounds of hashing
// are used until the required number of bits is reached.
var entropyBin = "";
var iterations = 0;
while (entropyBin.length < numberOfBits) {
var hashedCards = sjcl.hash.sha256.hash(normalizedCards);
for (var j=0; j<iterations; j++) {
hashedCards = sjcl.hash.sha256.hash(hashedCards);
}
var hashHex = sjcl.codec.hex.fromBits(hashedCards);
for (var i=0; i<hashHex.length; i++) {
var decimal = parseInt(hashHex[i], 16);
var binary = decimal.toString(2);
while (binary.length < 4) {
binary = "0" + binary;
}
entropyBin = entropyBin + binary;
}
iterations = iterations + 1;
}
// Truncate to the appropriate number of bits.
entropyBin = entropyBin.substring(0, numberOfBits);
// Get the number of bits per event
bitsPerEvent = maxBits / totalCards;
return {
binaryStr: entropyBin,
bitsPerEvent: bitsPerEvent,
}
}
// Polyfill for Math.log2
// See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/log2#Polyfill
Math.log2 = Math.log2 || function(x) {
// The polyfill isn't good enough because of the poor accuracy of
// Math.LOG2E
// log2(8) gave 2.9999999999999996 which when floored causes issues.
// So instead use the BigInteger library to get it right.
return BigInteger.log(x) / BigInteger.log(2);
};
// Depends on BigInteger
function factorial(n) {
if (n == 0) {
return 1;
}
f = BigInteger.ONE;
for (var i=1; i<=n; i++) {
f = f.multiply(new BigInteger(i));
}
return f;
}
})();