aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/zclconf/go-cty/cty/gocty/out.go
blob: 99b65a767ce7f323c4dfeee0b6948aa6c4181a5d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
package gocty

import (
	"math/big"
	"reflect"

	"math"

	"github.com/zclconf/go-cty/cty"
)

// FromCtyValue assigns a cty.Value to a reflect.Value, which must be a pointer,
// using a fixed set of conversion rules.
//
// This function considers its audience to be the creator of the cty Value
// given, and thus the error messages it generates are (unlike with ToCtyValue)
// presented in cty terminology that is generally appropriate to return to
// end-users in applications where cty data structures are built from
// user-provided configuration. In particular this means that if incorrect
// target types are provided by the calling application the resulting error
// messages are likely to be confusing, since we assume that the given target
// type is correct and the cty.Value is where the error lies.
//
// If an error is returned, the target data structure may have been partially
// populated, but the degree to which this is true is an implementation
// detail that the calling application should not rely on.
//
// The function will panic if given a non-pointer as the Go value target,
// since that is considered to be a bug in the calling program.
func FromCtyValue(val cty.Value, target interface{}) error {
	tVal := reflect.ValueOf(target)
	if tVal.Kind() != reflect.Ptr {
		panic("target value is not a pointer")
	}
	if tVal.IsNil() {
		panic("target value is nil pointer")
	}

	// 'path' starts off as empty but will grow for each level of recursive
	// call we make, so by the time fromCtyValue returns it is likely to have
	// unused capacity on the end of it, depending on how deeply-recursive
	// the given cty.Value is.
	path := make(cty.Path, 0)
	return fromCtyValue(val, tVal, path)
}

func fromCtyValue(val cty.Value, target reflect.Value, path cty.Path) error {
	ty := val.Type()

	deepTarget := fromCtyPopulatePtr(target, false)

	// If we're decoding into a cty.Value then we just pass through the
	// value as-is, to enable partial decoding. This is the only situation
	// where unknown values are permitted.
	if deepTarget.Kind() == reflect.Struct && deepTarget.Type().AssignableTo(valueType) {
		deepTarget.Set(reflect.ValueOf(val))
		return nil
	}

	// Lists and maps can be nil without indirection, but everything else
	// requires a pointer and we set it immediately to nil.
	// We also make an exception for capsule types because we want to handle
	// pointers specially for these.
	// (fromCtyList and fromCtyMap must therefore deal with val.IsNull, while
	// other types can assume no nulls after this point.)
	if val.IsNull() && !val.Type().IsListType() && !val.Type().IsMapType() && !val.Type().IsCapsuleType() {
		target = fromCtyPopulatePtr(target, true)
		if target.Kind() != reflect.Ptr {
			return path.NewErrorf("null value is not allowed")
		}

		target.Set(reflect.Zero(target.Type()))
		return nil
	}

	target = deepTarget

	if !val.IsKnown() {
		return path.NewErrorf("value must be known")
	}

	switch ty {
	case cty.Bool:
		return fromCtyBool(val, target, path)
	case cty.Number:
		return fromCtyNumber(val, target, path)
	case cty.String:
		return fromCtyString(val, target, path)
	}

	switch {
	case ty.IsListType():
		return fromCtyList(val, target, path)
	case ty.IsMapType():
		return fromCtyMap(val, target, path)
	case ty.IsSetType():
		return fromCtySet(val, target, path)
	case ty.IsObjectType():
		return fromCtyObject(val, target, path)
	case ty.IsTupleType():
		return fromCtyTuple(val, target, path)
	case ty.IsCapsuleType():
		return fromCtyCapsule(val, target, path)
	}

	// We should never fall out here; reaching here indicates a bug in this
	// function.
	return path.NewErrorf("unsupported source type %#v", ty)
}

func fromCtyBool(val cty.Value, target reflect.Value, path cty.Path) error {
	switch target.Kind() {

	case reflect.Bool:
		if val.True() {
			target.Set(reflect.ValueOf(true))
		} else {
			target.Set(reflect.ValueOf(false))
		}
		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyNumber(val cty.Value, target reflect.Value, path cty.Path) error {
	bf := val.AsBigFloat()

	switch target.Kind() {

	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return fromCtyNumberInt(bf, target, path)

	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		return fromCtyNumberUInt(bf, target, path)

	case reflect.Float32, reflect.Float64:
		return fromCtyNumberFloat(bf, target, path)

	case reflect.Struct:
		return fromCtyNumberBig(bf, target, path)

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyNumberInt(bf *big.Float, target reflect.Value, path cty.Path) error {
	// Doing this with switch rather than << arithmetic because << with
	// result >32-bits is not portable to 32-bit systems.
	var min int64
	var max int64
	switch target.Type().Bits() {
	case 8:
		min = math.MinInt8
		max = math.MaxInt8
	case 16:
		min = math.MinInt16
		max = math.MaxInt16
	case 32:
		min = math.MinInt32
		max = math.MaxInt32
	case 64:
		min = math.MinInt64
		max = math.MaxInt64
	default:
		panic("weird number of bits in target int")
	}

	iv, accuracy := bf.Int64()
	if accuracy != big.Exact || iv < min || iv > max {
		return path.NewErrorf("value must be a whole number, between %d and %d", min, max)
	}

	target.Set(reflect.ValueOf(iv).Convert(target.Type()))

	return nil
}

func fromCtyNumberUInt(bf *big.Float, target reflect.Value, path cty.Path) error {
	// Doing this with switch rather than << arithmetic because << with
	// result >32-bits is not portable to 32-bit systems.
	var max uint64
	switch target.Type().Bits() {
	case 8:
		max = math.MaxUint8
	case 16:
		max = math.MaxUint16
	case 32:
		max = math.MaxUint32
	case 64:
		max = math.MaxUint64
	default:
		panic("weird number of bits in target uint")
	}

	iv, accuracy := bf.Uint64()
	if accuracy != big.Exact || iv > max {
		return path.NewErrorf("value must be a whole number, between 0 and %d inclusive", max)
	}

	target.Set(reflect.ValueOf(iv).Convert(target.Type()))

	return nil
}

func fromCtyNumberFloat(bf *big.Float, target reflect.Value, path cty.Path) error {
	switch target.Kind() {
	case reflect.Float32:
		fv, accuracy := bf.Float32()
		if accuracy != big.Exact {
			// We allow the precision to be truncated as part of our conversion,
			// but we don't want to silently introduce infinities.
			if math.IsInf(float64(fv), 0) {
				return path.NewErrorf("value must be between %f and %f inclusive", -math.MaxFloat32, math.MaxFloat32)
			}
		}
		target.Set(reflect.ValueOf(fv))
		return nil
	case reflect.Float64:
		fv, accuracy := bf.Float64()
		if accuracy != big.Exact {
			// We allow the precision to be truncated as part of our conversion,
			// but we don't want to silently introduce infinities.
			if math.IsInf(fv, 0) {
				return path.NewErrorf("value must be between %f and %f inclusive", -math.MaxFloat64, math.MaxFloat64)
			}
		}
		target.Set(reflect.ValueOf(fv))
		return nil
	default:
		panic("unsupported kind of float")
	}
}

func fromCtyNumberBig(bf *big.Float, target reflect.Value, path cty.Path) error {
	switch {

	case bigFloatType.AssignableTo(target.Type()):
		// Easy!
		target.Set(reflect.ValueOf(bf).Elem())
		return nil

	case bigIntType.AssignableTo(target.Type()):
		bi, accuracy := bf.Int(nil)
		if accuracy != big.Exact {
			return path.NewErrorf("value must be a whole number")
		}
		target.Set(reflect.ValueOf(bi).Elem())
		return nil

	default:
		return likelyRequiredTypesError(path, target)
	}
}

func fromCtyString(val cty.Value, target reflect.Value, path cty.Path) error {
	switch target.Kind() {

	case reflect.String:
		target.Set(reflect.ValueOf(val.AsString()))
		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyList(val cty.Value, target reflect.Value, path cty.Path) error {
	switch target.Kind() {

	case reflect.Slice:
		if val.IsNull() {
			target.Set(reflect.Zero(target.Type()))
			return nil
		}

		length := val.LengthInt()
		tv := reflect.MakeSlice(target.Type(), length, length)

		path = append(path, nil)

		i := 0
		var err error
		val.ForEachElement(func(key cty.Value, val cty.Value) bool {
			path[len(path)-1] = cty.IndexStep{
				Key: cty.NumberIntVal(int64(i)),
			}

			targetElem := tv.Index(i)
			err = fromCtyValue(val, targetElem, path)
			if err != nil {
				return true
			}

			i++
			return false
		})
		if err != nil {
			return err
		}

		path = path[:len(path)-1]

		target.Set(tv)
		return nil

	case reflect.Array:
		if val.IsNull() {
			return path.NewErrorf("null value is not allowed")
		}

		length := val.LengthInt()
		if length != target.Len() {
			return path.NewErrorf("must be a list of length %d", target.Len())
		}

		path = append(path, nil)

		i := 0
		var err error
		val.ForEachElement(func(key cty.Value, val cty.Value) bool {
			path[len(path)-1] = cty.IndexStep{
				Key: cty.NumberIntVal(int64(i)),
			}

			targetElem := target.Index(i)
			err = fromCtyValue(val, targetElem, path)
			if err != nil {
				return true
			}

			i++
			return false
		})
		if err != nil {
			return err
		}

		path = path[:len(path)-1]

		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyMap(val cty.Value, target reflect.Value, path cty.Path) error {

	switch target.Kind() {

	case reflect.Map:
		if val.IsNull() {
			target.Set(reflect.Zero(target.Type()))
			return nil
		}

		tv := reflect.MakeMap(target.Type())
		et := target.Type().Elem()

		path = append(path, nil)

		var err error
		val.ForEachElement(func(key cty.Value, val cty.Value) bool {
			path[len(path)-1] = cty.IndexStep{
				Key: key,
			}

			ks := key.AsString()

			targetElem := reflect.New(et)
			err = fromCtyValue(val, targetElem, path)

			tv.SetMapIndex(reflect.ValueOf(ks), targetElem.Elem())

			return err != nil
		})
		if err != nil {
			return err
		}

		path = path[:len(path)-1]

		target.Set(tv)
		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtySet(val cty.Value, target reflect.Value, path cty.Path) error {
	switch target.Kind() {

	case reflect.Slice:
		if val.IsNull() {
			target.Set(reflect.Zero(target.Type()))
			return nil
		}

		length := val.LengthInt()
		tv := reflect.MakeSlice(target.Type(), length, length)

		i := 0
		var err error
		val.ForEachElement(func(key cty.Value, val cty.Value) bool {
			targetElem := tv.Index(i)
			err = fromCtyValue(val, targetElem, path)
			if err != nil {
				return true
			}

			i++
			return false
		})
		if err != nil {
			return err
		}

		target.Set(tv)
		return nil

	case reflect.Array:
		if val.IsNull() {
			return path.NewErrorf("null value is not allowed")
		}

		length := val.LengthInt()
		if length != target.Len() {
			return path.NewErrorf("must be a set of length %d", target.Len())
		}

		i := 0
		var err error
		val.ForEachElement(func(key cty.Value, val cty.Value) bool {
			targetElem := target.Index(i)
			err = fromCtyValue(val, targetElem, path)
			if err != nil {
				return true
			}

			i++
			return false
		})
		if err != nil {
			return err
		}

		return nil

	// TODO: decode into set.Set instance

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyObject(val cty.Value, target reflect.Value, path cty.Path) error {

	switch target.Kind() {

	case reflect.Struct:

		attrTypes := val.Type().AttributeTypes()
		targetFields := structTagIndices(target.Type())

		path = append(path, nil)

		for k, i := range targetFields {
			if _, exists := attrTypes[k]; !exists {
				// If the field in question isn't able to represent nil,
				// that's an error.
				fk := target.Field(i).Kind()
				switch fk {
				case reflect.Ptr, reflect.Slice, reflect.Map, reflect.Interface:
					// okay
				default:
					return path.NewErrorf("missing required attribute %q", k)
				}
			}
		}

		for k := range attrTypes {
			path[len(path)-1] = cty.GetAttrStep{
				Name: k,
			}

			fieldIdx, exists := targetFields[k]
			if !exists {
				return path.NewErrorf("unsupported attribute %q", k)
			}

			ev := val.GetAttr(k)

			targetField := target.Field(fieldIdx)
			err := fromCtyValue(ev, targetField, path)
			if err != nil {
				return err
			}
		}

		path = path[:len(path)-1]

		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyTuple(val cty.Value, target reflect.Value, path cty.Path) error {

	switch target.Kind() {

	case reflect.Struct:

		elemTypes := val.Type().TupleElementTypes()
		fieldCount := target.Type().NumField()

		if fieldCount != len(elemTypes) {
			return path.NewErrorf("a tuple of %d elements is required", fieldCount)
		}

		path = append(path, nil)

		for i := range elemTypes {
			path[len(path)-1] = cty.IndexStep{
				Key: cty.NumberIntVal(int64(i)),
			}

			ev := val.Index(cty.NumberIntVal(int64(i)))

			targetField := target.Field(i)
			err := fromCtyValue(ev, targetField, path)
			if err != nil {
				return err
			}
		}

		path = path[:len(path)-1]

		return nil

	default:
		return likelyRequiredTypesError(path, target)

	}
}

func fromCtyCapsule(val cty.Value, target reflect.Value, path cty.Path) error {

	if target.Kind() == reflect.Ptr {
		// Walk through indirection until we get to the last pointer,
		// which we might set to null below.
		target = fromCtyPopulatePtr(target, true)

		if val.IsNull() {
			target.Set(reflect.Zero(target.Type()))
			return nil
		}

		// Since a capsule contains a pointer to an object, we'll preserve
		// that pointer on the way out and thus allow the caller to recover
		// the original object, rather than a copy of it.

		eType := val.Type().EncapsulatedType()

		if !eType.AssignableTo(target.Elem().Type()) {
			// Our interface contract promises that we won't expose Go
			// implementation details in error messages, so we need to keep
			// this vague. This can only arise if a calling application has
			// more than one capsule type in play and a user mixes them up.
			return path.NewErrorf("incorrect type %s", val.Type().FriendlyName())
		}

		target.Set(reflect.ValueOf(val.EncapsulatedValue()))

		return nil
	} else {
		if val.IsNull() {
			return path.NewErrorf("null value is not allowed")
		}

		// If our target isn't a pointer then we will attempt to copy
		// the encapsulated value into it.

		eType := val.Type().EncapsulatedType()

		if !eType.AssignableTo(target.Type()) {
			// Our interface contract promises that we won't expose Go
			// implementation details in error messages, so we need to keep
			// this vague. This can only arise if a calling application has
			// more than one capsule type in play and a user mixes them up.
			return path.NewErrorf("incorrect type %s", val.Type().FriendlyName())
		}

		// We know that EncapsulatedValue is always a pointer, so we
		// can safely call .Elem on its reflect.Value.
		target.Set(reflect.ValueOf(val.EncapsulatedValue()).Elem())

		return nil
	}

}

// fromCtyPopulatePtr recognizes when target is a pointer type and allocates
// a value to assign to that pointer, which it returns.
//
// If the given value has multiple levels of indirection, like **int, these
// will be processed in turn so that the return value is guaranteed to be
// a non-pointer.
//
// As an exception, if decodingNull is true then the returned value will be
// the final level of pointer, if any, so that the caller can assign it
// as nil to represent a null value. If the given target value is not a pointer
// at all then the returned value will be just the given target, so the caller
// must test if the returned value is a pointer before trying to assign nil
// to it.
func fromCtyPopulatePtr(target reflect.Value, decodingNull bool) reflect.Value {
	for {
		if target.Kind() == reflect.Interface && !target.IsNil() {
			e := target.Elem()
			if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {
				target = e
			}
		}

		if target.Kind() != reflect.Ptr {
			break
		}

		// Stop early if we're decodingNull and we've found our last indirection
		if target.Elem().Kind() != reflect.Ptr && decodingNull && target.CanSet() {
			break
		}

		if target.IsNil() {
			target.Set(reflect.New(target.Type().Elem()))
		}

		target = target.Elem()
	}
	return target
}

// likelyRequiredTypesError returns an error that states which types are
// acceptable by making some assumptions about what types we support for
// each target Go kind. It's not a precise science but it allows us to return
// an error message that is cty-user-oriented rather than Go-oriented.
//
// Generally these error messages should be a matter of last resort, since
// the calling application should be validating user-provided value types
// before decoding anyway.
func likelyRequiredTypesError(path cty.Path, target reflect.Value) error {
	switch target.Kind() {

	case reflect.Bool:
		return path.NewErrorf("bool value is required")

	case reflect.String:
		return path.NewErrorf("string value is required")

	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		fallthrough
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
		fallthrough
	case reflect.Float32, reflect.Float64:
		return path.NewErrorf("number value is required")

	case reflect.Slice, reflect.Array:
		return path.NewErrorf("list or set value is required")

	case reflect.Map:
		return path.NewErrorf("map or object value is required")

	case reflect.Struct:
		switch {

		case target.Type().AssignableTo(bigFloatType) || target.Type().AssignableTo(bigIntType):
			return path.NewErrorf("number value is required")

		case target.Type().AssignableTo(setType):
			return path.NewErrorf("set or list value is required")

		default:
			return path.NewErrorf("object or tuple value is required")

		}

	default:
		// We should avoid getting into this path, since this error
		// message is rather useless.
		return path.NewErrorf("incorrect type")

	}
}