aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/zclconf/go-cty/cty/function/stdlib/sequence.go
blob: d3cc341dda66c765d8e09021004550acf3952276 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
package stdlib

import (
	"fmt"

	"github.com/zclconf/go-cty/cty"
	"github.com/zclconf/go-cty/cty/convert"
	"github.com/zclconf/go-cty/cty/function"
)

var ConcatFunc = function.New(&function.Spec{
	Params: []function.Parameter{},
	VarParam: &function.Parameter{
		Name: "seqs",
		Type: cty.DynamicPseudoType,
	},
	Type: func(args []cty.Value) (ret cty.Type, err error) {
		if len(args) == 0 {
			return cty.NilType, fmt.Errorf("at least one argument is required")
		}

		if args[0].Type().IsListType() {
			// Possibly we're going to return a list, if all of our other
			// args are also lists and we can find a common element type.
			tys := make([]cty.Type, len(args))
			for i, val := range args {
				ty := val.Type()
				if !ty.IsListType() {
					tys = nil
					break
				}
				tys[i] = ty
			}

			if tys != nil {
				commonType, _ := convert.UnifyUnsafe(tys)
				if commonType != cty.NilType {
					return commonType, nil
				}
			}
		}

		etys := make([]cty.Type, 0, len(args))
		for i, val := range args {
			ety := val.Type()
			switch {
			case ety.IsTupleType():
				etys = append(etys, ety.TupleElementTypes()...)
			case ety.IsListType():
				if !val.IsKnown() {
					// We need to know the list to count its elements to
					// build our tuple type, so any concat of an unknown
					// list can't be typed yet.
					return cty.DynamicPseudoType, nil
				}

				l := val.LengthInt()
				subEty := ety.ElementType()
				for j := 0; j < l; j++ {
					etys = append(etys, subEty)
				}
			default:
				return cty.NilType, function.NewArgErrorf(
					i, "all arguments must be lists or tuples; got %s",
					ety.FriendlyName(),
				)
			}
		}
		return cty.Tuple(etys), nil
	},
	Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
		switch {
		case retType.IsListType():
			// If retType is a list type then we know that all of the
			// given values will be lists and that they will either be of
			// retType or of something we can convert to retType.
			vals := make([]cty.Value, 0, len(args))
			for i, list := range args {
				list, err = convert.Convert(list, retType)
				if err != nil {
					// Conversion might fail because we used UnifyUnsafe
					// to choose our return type.
					return cty.NilVal, function.NewArgError(i, err)
				}

				it := list.ElementIterator()
				for it.Next() {
					_, v := it.Element()
					vals = append(vals, v)
				}
			}
			if len(vals) == 0 {
				return cty.ListValEmpty(retType.ElementType()), nil
			}

			return cty.ListVal(vals), nil
		case retType.IsTupleType():
			// If retType is a tuple type then we could have a mixture of
			// lists and tuples but we know they all have known values
			// (because our params don't AllowUnknown) and we know that
			// concatenating them all together will produce a tuple of
			// retType because of the work we did in the Type function above.
			vals := make([]cty.Value, 0, len(args))

			for _, seq := range args {
				// Both lists and tuples support ElementIterator, so this is easy.
				it := seq.ElementIterator()
				for it.Next() {
					_, v := it.Element()
					vals = append(vals, v)
				}
			}

			return cty.TupleVal(vals), nil
		default:
			// should never happen if Type is working correctly above
			panic("unsupported return type")
		}
	},
})

var RangeFunc = function.New(&function.Spec{
	VarParam: &function.Parameter{
		Name: "params",
		Type: cty.Number,
	},
	Type: function.StaticReturnType(cty.List(cty.Number)),
	Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
		var start, end, step cty.Value
		switch len(args) {
		case 1:
			if args[0].LessThan(cty.Zero).True() {
				start, end, step = cty.Zero, args[0], cty.NumberIntVal(-1)
			} else {
				start, end, step = cty.Zero, args[0], cty.NumberIntVal(1)
			}
		case 2:
			if args[1].LessThan(args[0]).True() {
				start, end, step = args[0], args[1], cty.NumberIntVal(-1)
			} else {
				start, end, step = args[0], args[1], cty.NumberIntVal(1)
			}
		case 3:
			start, end, step = args[0], args[1], args[2]
		default:
			return cty.NilVal, fmt.Errorf("must have one, two, or three arguments")
		}

		var vals []cty.Value

		if step == cty.Zero {
			return cty.NilVal, function.NewArgErrorf(2, "step must not be zero")
		}
		down := step.LessThan(cty.Zero).True()

		if down {
			if end.GreaterThan(start).True() {
				return cty.NilVal, function.NewArgErrorf(1, "end must be less than start when step is negative")
			}
		} else {
			if end.LessThan(start).True() {
				return cty.NilVal, function.NewArgErrorf(1, "end must be greater than start when step is positive")
			}
		}

		num := start
		for {
			if down {
				if num.LessThanOrEqualTo(end).True() {
					break
				}
			} else {
				if num.GreaterThanOrEqualTo(end).True() {
					break
				}
			}
			if len(vals) >= 1024 {
				// Artificial limit to prevent bad arguments from consuming huge amounts of memory
				return cty.NilVal, fmt.Errorf("more than 1024 values were generated; either decrease the difference between start and end or use a smaller step")
			}
			vals = append(vals, num)
			num = num.Add(step)
		}
		if len(vals) == 0 {
			return cty.ListValEmpty(cty.Number), nil
		}
		return cty.ListVal(vals), nil
	},
})

// Concat takes one or more sequences (lists or tuples) and returns the single
// sequence that results from concatenating them together in order.
//
// If all of the given sequences are lists of the same element type then the
// result is a list of that type. Otherwise, the result is a of a tuple type
// constructed from the given sequence types.
func Concat(seqs ...cty.Value) (cty.Value, error) {
	return ConcatFunc.Call(seqs)
}

// Range creates a list of numbers by starting from the given starting value,
// then adding the given step value until the result is greater than or
// equal to the given stopping value. Each intermediate result becomes an
// element in the resulting list.
//
// When all three parameters are set, the order is (start, end, step). If
// only two parameters are set, they are the start and end respectively and
// step defaults to 1. If only one argument is set, it gives the end value
// with start defaulting to 0 and step defaulting to 1.
//
// Because the resulting list must be fully buffered in memory, there is an
// artificial cap of 1024 elements, after which this function will return
// an error to avoid consuming unbounded amounts of memory. The Range function
// is primarily intended for creating small lists of indices to iterate over,
// so there should be no reason to generate huge lists with it.
func Range(params ...cty.Value) (cty.Value, error) {
	return RangeFunc.Call(params)
}