aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/github.com/hashicorp/hcl2/hcl/diagnostic_text.go
blob: 0b4a2629b980676d6bb80a32c517d531de56c2e5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
package hcl

import (
	"bufio"
	"bytes"
	"errors"
	"fmt"
	"io"
	"sort"

	wordwrap "github.com/mitchellh/go-wordwrap"
	"github.com/zclconf/go-cty/cty"
)

type diagnosticTextWriter struct {
	files map[string]*File
	wr    io.Writer
	width uint
	color bool
}

// NewDiagnosticTextWriter creates a DiagnosticWriter that writes diagnostics
// to the given writer as formatted text.
//
// It is designed to produce text appropriate to print in a monospaced font
// in a terminal of a particular width, or optionally with no width limit.
//
// The given width may be zero to disable word-wrapping of the detail text
// and truncation of source code snippets.
//
// If color is set to true, the output will include VT100 escape sequences to
// color-code the severity indicators. It is suggested to turn this off if
// the target writer is not a terminal.
func NewDiagnosticTextWriter(wr io.Writer, files map[string]*File, width uint, color bool) DiagnosticWriter {
	return &diagnosticTextWriter{
		files: files,
		wr:    wr,
		width: width,
		color: color,
	}
}

func (w *diagnosticTextWriter) WriteDiagnostic(diag *Diagnostic) error {
	if diag == nil {
		return errors.New("nil diagnostic")
	}

	var colorCode, highlightCode, resetCode string
	if w.color {
		switch diag.Severity {
		case DiagError:
			colorCode = "\x1b[31m"
		case DiagWarning:
			colorCode = "\x1b[33m"
		}
		resetCode = "\x1b[0m"
		highlightCode = "\x1b[1;4m"
	}

	var severityStr string
	switch diag.Severity {
	case DiagError:
		severityStr = "Error"
	case DiagWarning:
		severityStr = "Warning"
	default:
		// should never happen
		severityStr = "???????"
	}

	fmt.Fprintf(w.wr, "%s%s%s: %s\n\n", colorCode, severityStr, resetCode, diag.Summary)

	if diag.Subject != nil {
		snipRange := *diag.Subject
		highlightRange := snipRange
		if diag.Context != nil {
			// Show enough of the source code to include both the subject
			// and context ranges, which overlap in all reasonable
			// situations.
			snipRange = RangeOver(snipRange, *diag.Context)
		}
		// We can't illustrate an empty range, so we'll turn such ranges into
		// single-character ranges, which might not be totally valid (may point
		// off the end of a line, or off the end of the file) but are good
		// enough for the bounds checks we do below.
		if snipRange.Empty() {
			snipRange.End.Byte++
			snipRange.End.Column++
		}
		if highlightRange.Empty() {
			highlightRange.End.Byte++
			highlightRange.End.Column++
		}

		file := w.files[diag.Subject.Filename]
		if file == nil || file.Bytes == nil {
			fmt.Fprintf(w.wr, "  on %s line %d:\n  (source code not available)\n\n", diag.Subject.Filename, diag.Subject.Start.Line)
		} else {

			var contextLine string
			if diag.Subject != nil {
				contextLine = contextString(file, diag.Subject.Start.Byte)
				if contextLine != "" {
					contextLine = ", in " + contextLine
				}
			}

			fmt.Fprintf(w.wr, "  on %s line %d%s:\n", diag.Subject.Filename, diag.Subject.Start.Line, contextLine)

			src := file.Bytes
			sc := NewRangeScanner(src, diag.Subject.Filename, bufio.ScanLines)

			for sc.Scan() {
				lineRange := sc.Range()
				if !lineRange.Overlaps(snipRange) {
					continue
				}

				beforeRange, highlightedRange, afterRange := lineRange.PartitionAround(highlightRange)
				if highlightedRange.Empty() {
					fmt.Fprintf(w.wr, "%4d: %s\n", lineRange.Start.Line, sc.Bytes())
				} else {
					before := beforeRange.SliceBytes(src)
					highlighted := highlightedRange.SliceBytes(src)
					after := afterRange.SliceBytes(src)
					fmt.Fprintf(
						w.wr, "%4d: %s%s%s%s%s\n",
						lineRange.Start.Line,
						before,
						highlightCode, highlighted, resetCode,
						after,
					)
				}

			}

			w.wr.Write([]byte{'\n'})
		}

		if diag.Expression != nil && diag.EvalContext != nil {
			// We will attempt to render the values for any variables
			// referenced in the given expression as additional context, for
			// situations where the same expression is evaluated multiple
			// times in different scopes.
			expr := diag.Expression
			ctx := diag.EvalContext

			vars := expr.Variables()
			stmts := make([]string, 0, len(vars))
			seen := make(map[string]struct{}, len(vars))
			for _, traversal := range vars {
				val, diags := traversal.TraverseAbs(ctx)
				if diags.HasErrors() {
					// Skip anything that generates errors, since we probably
					// already have the same error in our diagnostics set
					// already.
					continue
				}

				traversalStr := w.traversalStr(traversal)
				if _, exists := seen[traversalStr]; exists {
					continue // don't show duplicates when the same variable is referenced multiple times
				}
				switch {
				case !val.IsKnown():
					// Can't say anything about this yet, then.
					continue
				case val.IsNull():
					stmts = append(stmts, fmt.Sprintf("%s set to null", traversalStr))
				default:
					stmts = append(stmts, fmt.Sprintf("%s as %s", traversalStr, w.valueStr(val)))
				}
				seen[traversalStr] = struct{}{}
			}

			sort.Strings(stmts) // FIXME: Should maybe use a traversal-aware sort that can sort numeric indexes properly?
			last := len(stmts) - 1

			for i, stmt := range stmts {
				switch i {
				case 0:
					w.wr.Write([]byte{'w', 'i', 't', 'h', ' '})
				default:
					w.wr.Write([]byte{' ', ' ', ' ', ' ', ' '})
				}
				w.wr.Write([]byte(stmt))
				switch i {
				case last:
					w.wr.Write([]byte{'.', '\n', '\n'})
				default:
					w.wr.Write([]byte{',', '\n'})
				}
			}
		}
	}

	if diag.Detail != "" {
		detail := diag.Detail
		if w.width != 0 {
			detail = wordwrap.WrapString(detail, w.width)
		}
		fmt.Fprintf(w.wr, "%s\n\n", detail)
	}

	return nil
}

func (w *diagnosticTextWriter) WriteDiagnostics(diags Diagnostics) error {
	for _, diag := range diags {
		err := w.WriteDiagnostic(diag)
		if err != nil {
			return err
		}
	}
	return nil
}

func (w *diagnosticTextWriter) traversalStr(traversal Traversal) string {
	// This is a specialized subset of traversal rendering tailored to
	// producing helpful contextual messages in diagnostics. It is not
	// comprehensive nor intended to be used for other purposes.

	var buf bytes.Buffer
	for _, step := range traversal {
		switch tStep := step.(type) {
		case TraverseRoot:
			buf.WriteString(tStep.Name)
		case TraverseAttr:
			buf.WriteByte('.')
			buf.WriteString(tStep.Name)
		case TraverseIndex:
			buf.WriteByte('[')
			if keyTy := tStep.Key.Type(); keyTy.IsPrimitiveType() {
				buf.WriteString(w.valueStr(tStep.Key))
			} else {
				// We'll just use a placeholder for more complex values,
				// since otherwise our result could grow ridiculously long.
				buf.WriteString("...")
			}
			buf.WriteByte(']')
		}
	}
	return buf.String()
}

func (w *diagnosticTextWriter) valueStr(val cty.Value) string {
	// This is a specialized subset of value rendering tailored to producing
	// helpful but concise messages in diagnostics. It is not comprehensive
	// nor intended to be used for other purposes.

	ty := val.Type()
	switch {
	case val.IsNull():
		return "null"
	case !val.IsKnown():
		// Should never happen here because we should filter before we get
		// in here, but we'll do something reasonable rather than panic.
		return "(not yet known)"
	case ty == cty.Bool:
		if val.True() {
			return "true"
		}
		return "false"
	case ty == cty.Number:
		bf := val.AsBigFloat()
		return bf.Text('g', 10)
	case ty == cty.String:
		// Go string syntax is not exactly the same as HCL native string syntax,
		// but we'll accept the minor edge-cases where this is different here
		// for now, just to get something reasonable here.
		return fmt.Sprintf("%q", val.AsString())
	case ty.IsCollectionType() || ty.IsTupleType():
		l := val.LengthInt()
		switch l {
		case 0:
			return "empty " + ty.FriendlyName()
		case 1:
			return ty.FriendlyName() + " with 1 element"
		default:
			return fmt.Sprintf("%s with %d elements", ty.FriendlyName(), l)
		}
	case ty.IsObjectType():
		atys := ty.AttributeTypes()
		l := len(atys)
		switch l {
		case 0:
			return "object with no attributes"
		case 1:
			var name string
			for k := range atys {
				name = k
			}
			return fmt.Sprintf("object with 1 attribute %q", name)
		default:
			return fmt.Sprintf("object with %d attributes", l)
		}
	default:
		return ty.FriendlyName()
	}
}

func contextString(file *File, offset int) string {
	type contextStringer interface {
		ContextString(offset int) string
	}

	if cser, ok := file.Nav.(contextStringer); ok {
		return cser.ContextString(offset)
	}
	return ""
}