From 15c0b25d011f37e7c20aeca9eaf461f78285b8d9 Mon Sep 17 00:00:00 2001 From: Alex Pilon Date: Fri, 22 Feb 2019 18:24:37 -0500 Subject: deps: github.com/hashicorp/terraform@sdk-v0.11-with-go-modules Updated via: go get github.com/hashicorp/terraform@sdk-v0.11-with-go-modules and go mod tidy --- vendor/github.com/armon/go-radix/radix.go | 496 ++++++++++++++++++++++++++++++ 1 file changed, 496 insertions(+) create mode 100644 vendor/github.com/armon/go-radix/radix.go (limited to 'vendor/github.com/armon/go-radix/radix.go') diff --git a/vendor/github.com/armon/go-radix/radix.go b/vendor/github.com/armon/go-radix/radix.go new file mode 100644 index 0000000..d2914c1 --- /dev/null +++ b/vendor/github.com/armon/go-radix/radix.go @@ -0,0 +1,496 @@ +package radix + +import ( + "sort" + "strings" +) + +// WalkFn is used when walking the tree. Takes a +// key and value, returning if iteration should +// be terminated. +type WalkFn func(s string, v interface{}) bool + +// leafNode is used to represent a value +type leafNode struct { + key string + val interface{} +} + +// edge is used to represent an edge node +type edge struct { + label byte + node *node +} + +type node struct { + // leaf is used to store possible leaf + leaf *leafNode + + // prefix is the common prefix we ignore + prefix string + + // Edges should be stored in-order for iteration. + // We avoid a fully materialized slice to save memory, + // since in most cases we expect to be sparse + edges edges +} + +func (n *node) isLeaf() bool { + return n.leaf != nil +} + +func (n *node) addEdge(e edge) { + n.edges = append(n.edges, e) + n.edges.Sort() +} + +func (n *node) replaceEdge(e edge) { + num := len(n.edges) + idx := sort.Search(num, func(i int) bool { + return n.edges[i].label >= e.label + }) + if idx < num && n.edges[idx].label == e.label { + n.edges[idx].node = e.node + return + } + panic("replacing missing edge") +} + +func (n *node) getEdge(label byte) *node { + num := len(n.edges) + idx := sort.Search(num, func(i int) bool { + return n.edges[i].label >= label + }) + if idx < num && n.edges[idx].label == label { + return n.edges[idx].node + } + return nil +} + +func (n *node) delEdge(label byte) { + num := len(n.edges) + idx := sort.Search(num, func(i int) bool { + return n.edges[i].label >= label + }) + if idx < num && n.edges[idx].label == label { + copy(n.edges[idx:], n.edges[idx+1:]) + n.edges[len(n.edges)-1] = edge{} + n.edges = n.edges[:len(n.edges)-1] + } +} + +type edges []edge + +func (e edges) Len() int { + return len(e) +} + +func (e edges) Less(i, j int) bool { + return e[i].label < e[j].label +} + +func (e edges) Swap(i, j int) { + e[i], e[j] = e[j], e[i] +} + +func (e edges) Sort() { + sort.Sort(e) +} + +// Tree implements a radix tree. This can be treated as a +// Dictionary abstract data type. The main advantage over +// a standard hash map is prefix-based lookups and +// ordered iteration, +type Tree struct { + root *node + size int +} + +// New returns an empty Tree +func New() *Tree { + return NewFromMap(nil) +} + +// NewFromMap returns a new tree containing the keys +// from an existing map +func NewFromMap(m map[string]interface{}) *Tree { + t := &Tree{root: &node{}} + for k, v := range m { + t.Insert(k, v) + } + return t +} + +// Len is used to return the number of elements in the tree +func (t *Tree) Len() int { + return t.size +} + +// longestPrefix finds the length of the shared prefix +// of two strings +func longestPrefix(k1, k2 string) int { + max := len(k1) + if l := len(k2); l < max { + max = l + } + var i int + for i = 0; i < max; i++ { + if k1[i] != k2[i] { + break + } + } + return i +} + +// Insert is used to add a newentry or update +// an existing entry. Returns if updated. +func (t *Tree) Insert(s string, v interface{}) (interface{}, bool) { + var parent *node + n := t.root + search := s + for { + // Handle key exhaution + if len(search) == 0 { + if n.isLeaf() { + old := n.leaf.val + n.leaf.val = v + return old, true + } + + n.leaf = &leafNode{ + key: s, + val: v, + } + t.size++ + return nil, false + } + + // Look for the edge + parent = n + n = n.getEdge(search[0]) + + // No edge, create one + if n == nil { + e := edge{ + label: search[0], + node: &node{ + leaf: &leafNode{ + key: s, + val: v, + }, + prefix: search, + }, + } + parent.addEdge(e) + t.size++ + return nil, false + } + + // Determine longest prefix of the search key on match + commonPrefix := longestPrefix(search, n.prefix) + if commonPrefix == len(n.prefix) { + search = search[commonPrefix:] + continue + } + + // Split the node + t.size++ + child := &node{ + prefix: search[:commonPrefix], + } + parent.replaceEdge(edge{ + label: search[0], + node: child, + }) + + // Restore the existing node + child.addEdge(edge{ + label: n.prefix[commonPrefix], + node: n, + }) + n.prefix = n.prefix[commonPrefix:] + + // Create a new leaf node + leaf := &leafNode{ + key: s, + val: v, + } + + // If the new key is a subset, add to to this node + search = search[commonPrefix:] + if len(search) == 0 { + child.leaf = leaf + return nil, false + } + + // Create a new edge for the node + child.addEdge(edge{ + label: search[0], + node: &node{ + leaf: leaf, + prefix: search, + }, + }) + return nil, false + } +} + +// Delete is used to delete a key, returning the previous +// value and if it was deleted +func (t *Tree) Delete(s string) (interface{}, bool) { + var parent *node + var label byte + n := t.root + search := s + for { + // Check for key exhaution + if len(search) == 0 { + if !n.isLeaf() { + break + } + goto DELETE + } + + // Look for an edge + parent = n + label = search[0] + n = n.getEdge(label) + if n == nil { + break + } + + // Consume the search prefix + if strings.HasPrefix(search, n.prefix) { + search = search[len(n.prefix):] + } else { + break + } + } + return nil, false + +DELETE: + // Delete the leaf + leaf := n.leaf + n.leaf = nil + t.size-- + + // Check if we should delete this node from the parent + if parent != nil && len(n.edges) == 0 { + parent.delEdge(label) + } + + // Check if we should merge this node + if n != t.root && len(n.edges) == 1 { + n.mergeChild() + } + + // Check if we should merge the parent's other child + if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() { + parent.mergeChild() + } + + return leaf.val, true +} + +func (n *node) mergeChild() { + e := n.edges[0] + child := e.node + n.prefix = n.prefix + child.prefix + n.leaf = child.leaf + n.edges = child.edges +} + +// Get is used to lookup a specific key, returning +// the value and if it was found +func (t *Tree) Get(s string) (interface{}, bool) { + n := t.root + search := s + for { + // Check for key exhaution + if len(search) == 0 { + if n.isLeaf() { + return n.leaf.val, true + } + break + } + + // Look for an edge + n = n.getEdge(search[0]) + if n == nil { + break + } + + // Consume the search prefix + if strings.HasPrefix(search, n.prefix) { + search = search[len(n.prefix):] + } else { + break + } + } + return nil, false +} + +// LongestPrefix is like Get, but instead of an +// exact match, it will return the longest prefix match. +func (t *Tree) LongestPrefix(s string) (string, interface{}, bool) { + var last *leafNode + n := t.root + search := s + for { + // Look for a leaf node + if n.isLeaf() { + last = n.leaf + } + + // Check for key exhaution + if len(search) == 0 { + break + } + + // Look for an edge + n = n.getEdge(search[0]) + if n == nil { + break + } + + // Consume the search prefix + if strings.HasPrefix(search, n.prefix) { + search = search[len(n.prefix):] + } else { + break + } + } + if last != nil { + return last.key, last.val, true + } + return "", nil, false +} + +// Minimum is used to return the minimum value in the tree +func (t *Tree) Minimum() (string, interface{}, bool) { + n := t.root + for { + if n.isLeaf() { + return n.leaf.key, n.leaf.val, true + } + if len(n.edges) > 0 { + n = n.edges[0].node + } else { + break + } + } + return "", nil, false +} + +// Maximum is used to return the maximum value in the tree +func (t *Tree) Maximum() (string, interface{}, bool) { + n := t.root + for { + if num := len(n.edges); num > 0 { + n = n.edges[num-1].node + continue + } + if n.isLeaf() { + return n.leaf.key, n.leaf.val, true + } + break + } + return "", nil, false +} + +// Walk is used to walk the tree +func (t *Tree) Walk(fn WalkFn) { + recursiveWalk(t.root, fn) +} + +// WalkPrefix is used to walk the tree under a prefix +func (t *Tree) WalkPrefix(prefix string, fn WalkFn) { + n := t.root + search := prefix + for { + // Check for key exhaution + if len(search) == 0 { + recursiveWalk(n, fn) + return + } + + // Look for an edge + n = n.getEdge(search[0]) + if n == nil { + break + } + + // Consume the search prefix + if strings.HasPrefix(search, n.prefix) { + search = search[len(n.prefix):] + + } else if strings.HasPrefix(n.prefix, search) { + // Child may be under our search prefix + recursiveWalk(n, fn) + return + } else { + break + } + } + +} + +// WalkPath is used to walk the tree, but only visiting nodes +// from the root down to a given leaf. Where WalkPrefix walks +// all the entries *under* the given prefix, this walks the +// entries *above* the given prefix. +func (t *Tree) WalkPath(path string, fn WalkFn) { + n := t.root + search := path + for { + // Visit the leaf values if any + if n.leaf != nil && fn(n.leaf.key, n.leaf.val) { + return + } + + // Check for key exhaution + if len(search) == 0 { + return + } + + // Look for an edge + n = n.getEdge(search[0]) + if n == nil { + return + } + + // Consume the search prefix + if strings.HasPrefix(search, n.prefix) { + search = search[len(n.prefix):] + } else { + break + } + } +} + +// recursiveWalk is used to do a pre-order walk of a node +// recursively. Returns true if the walk should be aborted +func recursiveWalk(n *node, fn WalkFn) bool { + // Visit the leaf values if any + if n.leaf != nil && fn(n.leaf.key, n.leaf.val) { + return true + } + + // Recurse on the children + for _, e := range n.edges { + if recursiveWalk(e.node, fn) { + return true + } + } + return false +} + +// ToMap is used to walk the tree and convert it into a map +func (t *Tree) ToMap() map[string]interface{} { + out := make(map[string]interface{}, t.size) + t.Walk(func(k string, v interface{}) bool { + out[k] = v + return false + }) + return out +} -- cgit v1.2.3