aboutsummaryrefslogblamecommitdiffhomepage
path: root/vendor/github.com/hashicorp/hcl2/hcl/hclsyntax/parser.go
blob: 253ad5031a2550406c89b1be7105a47578577b16 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036










                                                      












































                                                                                  
                                                                                                                                     























                                                                                                

                                                                                               




                                                                              

                                                                                                              






























                                                                                                                     

                                                                                              








                                                       
                                                                 






                                                        

                                                                                                                                                                             







                                                       

































































                                                                                                                                                                                                                                                                                                       















                                                                                    

























                                                                                                                                    
                         



































                                                                                     


                                                                                    












                                                                             
                                                                                                                                                        



























                                                                                                                                                                            



                                                              










                                                                              












































                                                                                                                                                                                                                                                                           


















                                                                                         










                                                                              

























































































































































                                                                                                                              







                                                                                           




































































































































































































                                                                                                                                                                                                                                                                                 






                                                                                               


                                                                              

                                                                                                                                                          



                                                                       









                                                                                              
 






                                                                                                    
                                 
 






































                                                                                                                                





















































































































                                                                                                        
                                                                                                       












































































                                                                                                                        



                                                                              






























































































































































































                                                                                                                                                          






                                                                               


                                                   


                                    





































                                                                                         

                                                              

                                                                              

                                                                                                                               


                                                                                                         








                                                                                                    


                                                                                        








                                                                                                                                                                                                                                                                        




































                                                                                                         

                                                                                                                             




















                                                                                                 

                                    







































































                                                                                                             
                                                                                                                  


























                                                                                             
                                                                                                             
























































































































































                                                                                                          
                                           











                                                                                                                                                            









                                                                                                           



















                                                                                                              
                                              



















































































































































































































































































































































                                                                                                                                    
package hclsyntax

import (
	"bytes"
	"fmt"
	"strconv"
	"unicode/utf8"

	"github.com/apparentlymart/go-textseg/textseg"
	"github.com/hashicorp/hcl2/hcl"
	"github.com/zclconf/go-cty/cty"
)

type parser struct {
	*peeker

	// set to true if any recovery is attempted. The parser can use this
	// to attempt to reduce error noise by suppressing "bad token" errors
	// in recovery mode, assuming that the recovery heuristics have failed
	// in this case and left the peeker in a wrong place.
	recovery bool
}

func (p *parser) ParseBody(end TokenType) (*Body, hcl.Diagnostics) {
	attrs := Attributes{}
	blocks := Blocks{}
	var diags hcl.Diagnostics

	startRange := p.PrevRange()
	var endRange hcl.Range

Token:
	for {
		next := p.Peek()
		if next.Type == end {
			endRange = p.NextRange()
			p.Read()
			break Token
		}

		switch next.Type {
		case TokenNewline:
			p.Read()
			continue
		case TokenIdent:
			item, itemDiags := p.ParseBodyItem()
			diags = append(diags, itemDiags...)
			switch titem := item.(type) {
			case *Block:
				blocks = append(blocks, titem)
			case *Attribute:
				if existing, exists := attrs[titem.Name]; exists {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Attribute redefined",
						Detail: fmt.Sprintf(
							"The argument %q was already set at %s. Each argument may be set only once.",
							titem.Name, existing.NameRange.String(),
						),
						Subject: &titem.NameRange,
					})
				} else {
					attrs[titem.Name] = titem
				}
			default:
				// This should never happen for valid input, but may if a
				// syntax error was detected in ParseBodyItem that prevented
				// it from even producing a partially-broken item. In that
				// case, it would've left at least one error in the diagnostics
				// slice we already dealt with above.
				//
				// We'll assume ParseBodyItem attempted recovery to leave
				// us in a reasonable position to try parsing the next item.
				continue
			}
		default:
			bad := p.Read()
			if !p.recovery {
				if bad.Type == TokenOQuote {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid argument name",
						Detail:   "Argument names must not be quoted.",
						Subject:  &bad.Range,
					})
				} else {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Argument or block definition required",
						Detail:   "An argument or block definition is required here.",
						Subject:  &bad.Range,
					})
				}
			}
			endRange = p.PrevRange() // arbitrary, but somewhere inside the body means better diagnostics

			p.recover(end) // attempt to recover to the token after the end of this body
			break Token
		}
	}

	return &Body{
		Attributes: attrs,
		Blocks:     blocks,

		SrcRange: hcl.RangeBetween(startRange, endRange),
		EndRange: hcl.Range{
			Filename: endRange.Filename,
			Start:    endRange.End,
			End:      endRange.End,
		},
	}, diags
}

func (p *parser) ParseBodyItem() (Node, hcl.Diagnostics) {
	ident := p.Read()
	if ident.Type != TokenIdent {
		p.recoverAfterBodyItem()
		return nil, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Argument or block definition required",
				Detail:   "An argument or block definition is required here.",
				Subject:  &ident.Range,
			},
		}
	}

	next := p.Peek()

	switch next.Type {
	case TokenEqual:
		return p.finishParsingBodyAttribute(ident, false)
	case TokenOQuote, TokenOBrace, TokenIdent:
		return p.finishParsingBodyBlock(ident)
	default:
		p.recoverAfterBodyItem()
		return nil, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Argument or block definition required",
				Detail:   "An argument or block definition is required here. To set an argument, use the equals sign \"=\" to introduce the argument value.",
				Subject:  &ident.Range,
			},
		}
	}

	return nil, nil
}

// parseSingleAttrBody is a weird variant of ParseBody that deals with the
// body of a nested block containing only one attribute value all on a single
// line, like foo { bar = baz } . It expects to find a single attribute item
// immediately followed by the end token type with no intervening newlines.
func (p *parser) parseSingleAttrBody(end TokenType) (*Body, hcl.Diagnostics) {
	ident := p.Read()
	if ident.Type != TokenIdent {
		p.recoverAfterBodyItem()
		return nil, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Argument or block definition required",
				Detail:   "An argument or block definition is required here.",
				Subject:  &ident.Range,
			},
		}
	}

	var attr *Attribute
	var diags hcl.Diagnostics

	next := p.Peek()

	switch next.Type {
	case TokenEqual:
		node, attrDiags := p.finishParsingBodyAttribute(ident, true)
		diags = append(diags, attrDiags...)
		attr = node.(*Attribute)
	case TokenOQuote, TokenOBrace, TokenIdent:
		p.recoverAfterBodyItem()
		return nil, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Argument definition required",
				Detail:   fmt.Sprintf("A single-line block definition can contain only a single argument. If you meant to define argument %q, use an equals sign to assign it a value. To define a nested block, place it on a line of its own within its parent block.", ident.Bytes),
				Subject:  hcl.RangeBetween(ident.Range, next.Range).Ptr(),
			},
		}
	default:
		p.recoverAfterBodyItem()
		return nil, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Argument or block definition required",
				Detail:   "An argument or block definition is required here. To set an argument, use the equals sign \"=\" to introduce the argument value.",
				Subject:  &ident.Range,
			},
		}
	}

	return &Body{
		Attributes: Attributes{
			string(ident.Bytes): attr,
		},

		SrcRange: attr.SrcRange,
		EndRange: hcl.Range{
			Filename: attr.SrcRange.Filename,
			Start:    attr.SrcRange.End,
			End:      attr.SrcRange.End,
		},
	}, diags

}

func (p *parser) finishParsingBodyAttribute(ident Token, singleLine bool) (Node, hcl.Diagnostics) {
	eqTok := p.Read() // eat equals token
	if eqTok.Type != TokenEqual {
		// should never happen if caller behaves
		panic("finishParsingBodyAttribute called with next not equals")
	}

	var endRange hcl.Range

	expr, diags := p.ParseExpression()
	if p.recovery && diags.HasErrors() {
		// recovery within expressions tends to be tricky, so we've probably
		// landed somewhere weird. We'll try to reset to the start of a body
		// item so parsing can continue.
		endRange = p.PrevRange()
		p.recoverAfterBodyItem()
	} else {
		endRange = p.PrevRange()
		if !singleLine {
			end := p.Peek()
			if end.Type != TokenNewline && end.Type != TokenEOF {
				if !p.recovery {
					summary := "Missing newline after argument"
					detail := "An argument definition must end with a newline."

					if end.Type == TokenComma {
						summary = "Unexpected comma after argument"
						detail = "Argument definitions must be separated by newlines, not commas. " + detail
					}

					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  summary,
						Detail:   detail,
						Subject:  &end.Range,
						Context:  hcl.RangeBetween(ident.Range, end.Range).Ptr(),
					})
				}
				endRange = p.PrevRange()
				p.recoverAfterBodyItem()
			} else {
				endRange = p.PrevRange()
				p.Read() // eat newline
			}
		}
	}

	return &Attribute{
		Name: string(ident.Bytes),
		Expr: expr,

		SrcRange:    hcl.RangeBetween(ident.Range, endRange),
		NameRange:   ident.Range,
		EqualsRange: eqTok.Range,
	}, diags
}

func (p *parser) finishParsingBodyBlock(ident Token) (Node, hcl.Diagnostics) {
	var blockType = string(ident.Bytes)
	var diags hcl.Diagnostics
	var labels []string
	var labelRanges []hcl.Range

	var oBrace Token

Token:
	for {
		tok := p.Peek()

		switch tok.Type {

		case TokenOBrace:
			oBrace = p.Read()
			break Token

		case TokenOQuote:
			label, labelRange, labelDiags := p.parseQuotedStringLiteral()
			diags = append(diags, labelDiags...)
			labels = append(labels, label)
			labelRanges = append(labelRanges, labelRange)
			// parseQuoteStringLiteral recovers up to the closing quote
			// if it encounters problems, so we can continue looking for
			// more labels and eventually the block body even.

		case TokenIdent:
			tok = p.Read() // eat token
			label, labelRange := string(tok.Bytes), tok.Range
			labels = append(labels, label)
			labelRanges = append(labelRanges, labelRange)

		default:
			switch tok.Type {
			case TokenEqual:
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid block definition",
					Detail:   "The equals sign \"=\" indicates an argument definition, and must not be used when defining a block.",
					Subject:  &tok.Range,
					Context:  hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
				})
			case TokenNewline:
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid block definition",
					Detail:   "A block definition must have block content delimited by \"{\" and \"}\", starting on the same line as the block header.",
					Subject:  &tok.Range,
					Context:  hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
				})
			default:
				if !p.recovery {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid block definition",
						Detail:   "Either a quoted string block label or an opening brace (\"{\") is expected here.",
						Subject:  &tok.Range,
						Context:  hcl.RangeBetween(ident.Range, tok.Range).Ptr(),
					})
				}
			}

			p.recoverAfterBodyItem()

			return &Block{
				Type:   blockType,
				Labels: labels,
				Body: &Body{
					SrcRange: ident.Range,
					EndRange: ident.Range,
				},

				TypeRange:       ident.Range,
				LabelRanges:     labelRanges,
				OpenBraceRange:  ident.Range, // placeholder
				CloseBraceRange: ident.Range, // placeholder
			}, diags
		}
	}

	// Once we fall out here, the peeker is pointed just after our opening
	// brace, so we can begin our nested body parsing.
	var body *Body
	var bodyDiags hcl.Diagnostics
	switch p.Peek().Type {
	case TokenNewline, TokenEOF, TokenCBrace:
		body, bodyDiags = p.ParseBody(TokenCBrace)
	default:
		// Special one-line, single-attribute block parsing mode.
		body, bodyDiags = p.parseSingleAttrBody(TokenCBrace)
		switch p.Peek().Type {
		case TokenCBrace:
			p.Read() // the happy path - just consume the closing brace
		case TokenComma:
			// User seems to be trying to use the object-constructor
			// comma-separated style, which isn't permitted for blocks.
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid single-argument block definition",
				Detail:   "Single-line block syntax can include only one argument definition. To define multiple arguments, use the multi-line block syntax with one argument definition per line.",
				Subject:  p.Peek().Range.Ptr(),
			})
			p.recover(TokenCBrace)
		case TokenNewline:
			// We don't allow weird mixtures of single and multi-line syntax.
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid single-argument block definition",
				Detail:   "An argument definition on the same line as its containing block creates a single-line block definition, which must also be closed on the same line. Place the block's closing brace immediately after the argument definition.",
				Subject:  p.Peek().Range.Ptr(),
			})
			p.recover(TokenCBrace)
		default:
			// Some other weird thing is going on. Since we can't guess a likely
			// user intent for this one, we'll skip it if we're already in
			// recovery mode.
			if !p.recovery {
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid single-argument block definition",
					Detail:   "A single-line block definition must end with a closing brace immediately after its single argument definition.",
					Subject:  p.Peek().Range.Ptr(),
				})
			}
			p.recover(TokenCBrace)
		}
	}
	diags = append(diags, bodyDiags...)
	cBraceRange := p.PrevRange()

	eol := p.Peek()
	if eol.Type == TokenNewline || eol.Type == TokenEOF {
		p.Read() // eat newline
	} else {
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Missing newline after block definition",
				Detail:   "A block definition must end with a newline.",
				Subject:  &eol.Range,
				Context:  hcl.RangeBetween(ident.Range, eol.Range).Ptr(),
			})
		}
		p.recoverAfterBodyItem()
	}

	// We must never produce a nil body, since the caller may attempt to
	// do analysis of a partial result when there's an error, so we'll
	// insert a placeholder if we otherwise failed to produce a valid
	// body due to one of the syntax error paths above.
	if body == nil && diags.HasErrors() {
		body = &Body{
			SrcRange: hcl.RangeBetween(oBrace.Range, cBraceRange),
			EndRange: cBraceRange,
		}
	}

	return &Block{
		Type:   blockType,
		Labels: labels,
		Body:   body,

		TypeRange:       ident.Range,
		LabelRanges:     labelRanges,
		OpenBraceRange:  oBrace.Range,
		CloseBraceRange: cBraceRange,
	}, diags
}

func (p *parser) ParseExpression() (Expression, hcl.Diagnostics) {
	return p.parseTernaryConditional()
}

func (p *parser) parseTernaryConditional() (Expression, hcl.Diagnostics) {
	// The ternary conditional operator (.. ? .. : ..) behaves somewhat
	// like a binary operator except that the "symbol" is itself
	// an expression enclosed in two punctuation characters.
	// The middle expression is parsed as if the ? and : symbols
	// were parentheses. The "rhs" (the "false expression") is then
	// treated right-associatively so it behaves similarly to the
	// middle in terms of precedence.

	startRange := p.NextRange()
	var condExpr, trueExpr, falseExpr Expression
	var diags hcl.Diagnostics

	condExpr, condDiags := p.parseBinaryOps(binaryOps)
	diags = append(diags, condDiags...)
	if p.recovery && condDiags.HasErrors() {
		return condExpr, diags
	}

	questionMark := p.Peek()
	if questionMark.Type != TokenQuestion {
		return condExpr, diags
	}

	p.Read() // eat question mark

	trueExpr, trueDiags := p.ParseExpression()
	diags = append(diags, trueDiags...)
	if p.recovery && trueDiags.HasErrors() {
		return condExpr, diags
	}

	colon := p.Peek()
	if colon.Type != TokenColon {
		diags = append(diags, &hcl.Diagnostic{
			Severity: hcl.DiagError,
			Summary:  "Missing false expression in conditional",
			Detail:   "The conditional operator (...?...:...) requires a false expression, delimited by a colon.",
			Subject:  &colon.Range,
			Context:  hcl.RangeBetween(startRange, colon.Range).Ptr(),
		})
		return condExpr, diags
	}

	p.Read() // eat colon

	falseExpr, falseDiags := p.ParseExpression()
	diags = append(diags, falseDiags...)
	if p.recovery && falseDiags.HasErrors() {
		return condExpr, diags
	}

	return &ConditionalExpr{
		Condition:   condExpr,
		TrueResult:  trueExpr,
		FalseResult: falseExpr,

		SrcRange: hcl.RangeBetween(startRange, falseExpr.Range()),
	}, diags
}

// parseBinaryOps calls itself recursively to work through all of the
// operator precedence groups, and then eventually calls parseExpressionTerm
// for each operand.
func (p *parser) parseBinaryOps(ops []map[TokenType]*Operation) (Expression, hcl.Diagnostics) {
	if len(ops) == 0 {
		// We've run out of operators, so now we'll just try to parse a term.
		return p.parseExpressionWithTraversals()
	}

	thisLevel := ops[0]
	remaining := ops[1:]

	var lhs, rhs Expression
	var operation *Operation
	var diags hcl.Diagnostics

	// Parse a term that might be the first operand of a binary
	// operation or it might just be a standalone term.
	// We won't know until we've parsed it and can look ahead
	// to see if there's an operator token for this level.
	lhs, lhsDiags := p.parseBinaryOps(remaining)
	diags = append(diags, lhsDiags...)
	if p.recovery && lhsDiags.HasErrors() {
		return lhs, diags
	}

	// We'll keep eating up operators until we run out, so that operators
	// with the same precedence will combine in a left-associative manner:
	// a+b+c => (a+b)+c, not a+(b+c)
	//
	// Should we later want to have right-associative operators, a way
	// to achieve that would be to call back up to ParseExpression here
	// instead of iteratively parsing only the remaining operators.
	for {
		next := p.Peek()
		var newOp *Operation
		var ok bool
		if newOp, ok = thisLevel[next.Type]; !ok {
			break
		}

		// Are we extending an expression started on the previous iteration?
		if operation != nil {
			lhs = &BinaryOpExpr{
				LHS: lhs,
				Op:  operation,
				RHS: rhs,

				SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()),
			}
		}

		operation = newOp
		p.Read() // eat operator token
		var rhsDiags hcl.Diagnostics
		rhs, rhsDiags = p.parseBinaryOps(remaining)
		diags = append(diags, rhsDiags...)
		if p.recovery && rhsDiags.HasErrors() {
			return lhs, diags
		}
	}

	if operation == nil {
		return lhs, diags
	}

	return &BinaryOpExpr{
		LHS: lhs,
		Op:  operation,
		RHS: rhs,

		SrcRange: hcl.RangeBetween(lhs.Range(), rhs.Range()),
	}, diags
}

func (p *parser) parseExpressionWithTraversals() (Expression, hcl.Diagnostics) {
	term, diags := p.parseExpressionTerm()
	ret, moreDiags := p.parseExpressionTraversals(term)
	diags = append(diags, moreDiags...)
	return ret, diags
}

func (p *parser) parseExpressionTraversals(from Expression) (Expression, hcl.Diagnostics) {
	var diags hcl.Diagnostics
	ret := from

Traversal:
	for {
		next := p.Peek()

		switch next.Type {
		case TokenDot:
			// Attribute access or splat
			dot := p.Read()
			attrTok := p.Peek()

			switch attrTok.Type {
			case TokenIdent:
				attrTok = p.Read() // eat token
				name := string(attrTok.Bytes)
				rng := hcl.RangeBetween(dot.Range, attrTok.Range)
				step := hcl.TraverseAttr{
					Name:     name,
					SrcRange: rng,
				}

				ret = makeRelativeTraversal(ret, step, rng)

			case TokenNumberLit:
				// This is a weird form we inherited from HIL, allowing numbers
				// to be used as attributes as a weird way of writing [n].
				// This was never actually a first-class thing in HIL, but
				// HIL tolerated sequences like .0. in its variable names and
				// calling applications like Terraform exploited that to
				// introduce indexing syntax where none existed.
				numTok := p.Read() // eat token
				attrTok = numTok

				// This syntax is ambiguous if multiple indices are used in
				// succession, like foo.0.1.baz: that actually parses as
				// a fractional number 0.1. Since we're only supporting this
				// syntax for compatibility with legacy Terraform
				// configurations, and Terraform does not tend to have lists
				// of lists, we'll choose to reject that here with a helpful
				// error message, rather than failing later because the index
				// isn't a whole number.
				if dotIdx := bytes.IndexByte(numTok.Bytes, '.'); dotIdx >= 0 {
					first := numTok.Bytes[:dotIdx]
					second := numTok.Bytes[dotIdx+1:]
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid legacy index syntax",
						Detail:   fmt.Sprintf("When using the legacy index syntax, chaining two indexes together is not permitted. Use the proper index syntax instead, like [%s][%s].", first, second),
						Subject:  &attrTok.Range,
					})
					rng := hcl.RangeBetween(dot.Range, numTok.Range)
					step := hcl.TraverseIndex{
						Key:      cty.DynamicVal,
						SrcRange: rng,
					}
					ret = makeRelativeTraversal(ret, step, rng)
					break
				}

				numVal, numDiags := p.numberLitValue(numTok)
				diags = append(diags, numDiags...)

				rng := hcl.RangeBetween(dot.Range, numTok.Range)
				step := hcl.TraverseIndex{
					Key:      numVal,
					SrcRange: rng,
				}

				ret = makeRelativeTraversal(ret, step, rng)

			case TokenStar:
				// "Attribute-only" splat expression.
				// (This is a kinda weird construct inherited from HIL, which
				// behaves a bit like a [*] splat except that it is only able
				// to do attribute traversals into each of its elements,
				// whereas foo[*] can support _any_ traversal.
				marker := p.Read() // eat star
				trav := make(hcl.Traversal, 0, 1)
				var firstRange, lastRange hcl.Range
				firstRange = p.NextRange()
				for p.Peek().Type == TokenDot {
					dot := p.Read()

					if p.Peek().Type == TokenNumberLit {
						// Continuing the "weird stuff inherited from HIL"
						// theme, we also allow numbers as attribute names
						// inside splats and interpret them as indexing
						// into a list, for expressions like:
						// foo.bar.*.baz.0.foo
						numTok := p.Read()

						// Weird special case if the user writes something
						// like foo.bar.*.baz.0.0.foo, where 0.0 parses
						// as a number.
						if dotIdx := bytes.IndexByte(numTok.Bytes, '.'); dotIdx >= 0 {
							first := numTok.Bytes[:dotIdx]
							second := numTok.Bytes[dotIdx+1:]
							diags = append(diags, &hcl.Diagnostic{
								Severity: hcl.DiagError,
								Summary:  "Invalid legacy index syntax",
								Detail:   fmt.Sprintf("When using the legacy index syntax, chaining two indexes together is not permitted. Use the proper index syntax with a full splat expression [*] instead, like [%s][%s].", first, second),
								Subject:  &attrTok.Range,
							})
							trav = append(trav, hcl.TraverseIndex{
								Key:      cty.DynamicVal,
								SrcRange: hcl.RangeBetween(dot.Range, numTok.Range),
							})
							lastRange = numTok.Range
							continue
						}

						numVal, numDiags := p.numberLitValue(numTok)
						diags = append(diags, numDiags...)
						trav = append(trav, hcl.TraverseIndex{
							Key:      numVal,
							SrcRange: hcl.RangeBetween(dot.Range, numTok.Range),
						})
						lastRange = numTok.Range
						continue
					}

					if p.Peek().Type != TokenIdent {
						if !p.recovery {
							if p.Peek().Type == TokenStar {
								diags = append(diags, &hcl.Diagnostic{
									Severity: hcl.DiagError,
									Summary:  "Nested splat expression not allowed",
									Detail:   "A splat expression (*) cannot be used inside another attribute-only splat expression.",
									Subject:  p.Peek().Range.Ptr(),
								})
							} else {
								diags = append(diags, &hcl.Diagnostic{
									Severity: hcl.DiagError,
									Summary:  "Invalid attribute name",
									Detail:   "An attribute name is required after a dot.",
									Subject:  &attrTok.Range,
								})
							}
						}
						p.setRecovery()
						continue Traversal
					}

					attrTok := p.Read()
					trav = append(trav, hcl.TraverseAttr{
						Name:     string(attrTok.Bytes),
						SrcRange: hcl.RangeBetween(dot.Range, attrTok.Range),
					})
					lastRange = attrTok.Range
				}

				itemExpr := &AnonSymbolExpr{
					SrcRange: hcl.RangeBetween(dot.Range, marker.Range),
				}
				var travExpr Expression
				if len(trav) == 0 {
					travExpr = itemExpr
				} else {
					travExpr = &RelativeTraversalExpr{
						Source:    itemExpr,
						Traversal: trav,
						SrcRange:  hcl.RangeBetween(firstRange, lastRange),
					}
				}

				ret = &SplatExpr{
					Source: ret,
					Each:   travExpr,
					Item:   itemExpr,

					SrcRange:    hcl.RangeBetween(dot.Range, lastRange),
					MarkerRange: hcl.RangeBetween(dot.Range, marker.Range),
				}

			default:
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid attribute name",
					Detail:   "An attribute name is required after a dot.",
					Subject:  &attrTok.Range,
				})
				// This leaves the peeker in a bad place, so following items
				// will probably be misparsed until we hit something that
				// allows us to re-sync.
				//
				// We will probably need to do something better here eventually
				// in order to support autocomplete triggered by typing a
				// period.
				p.setRecovery()
			}

		case TokenOBrack:
			// Indexing of a collection.
			// This may or may not be a hcl.Traverser, depending on whether
			// the key value is something constant.

			open := p.Read()
			switch p.Peek().Type {
			case TokenStar:
				// This is a full splat expression, like foo[*], which consumes
				// the rest of the traversal steps after it using a recursive
				// call to this function.
				p.Read() // consume star
				close := p.Read()
				if close.Type != TokenCBrack && !p.recovery {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Missing close bracket on splat index",
						Detail:   "The star for a full splat operator must be immediately followed by a closing bracket (\"]\").",
						Subject:  &close.Range,
					})
					close = p.recover(TokenCBrack)
				}
				// Splat expressions use a special "anonymous symbol"  as a
				// placeholder in an expression to be evaluated once for each
				// item in the source expression.
				itemExpr := &AnonSymbolExpr{
					SrcRange: hcl.RangeBetween(open.Range, close.Range),
				}
				// Now we'll recursively call this same function to eat any
				// remaining traversal steps against the anonymous symbol.
				travExpr, nestedDiags := p.parseExpressionTraversals(itemExpr)
				diags = append(diags, nestedDiags...)

				ret = &SplatExpr{
					Source: ret,
					Each:   travExpr,
					Item:   itemExpr,

					SrcRange:    hcl.RangeBetween(open.Range, travExpr.Range()),
					MarkerRange: hcl.RangeBetween(open.Range, close.Range),
				}

			default:

				var close Token
				p.PushIncludeNewlines(false) // arbitrary newlines allowed in brackets
				keyExpr, keyDiags := p.ParseExpression()
				diags = append(diags, keyDiags...)
				if p.recovery && keyDiags.HasErrors() {
					close = p.recover(TokenCBrack)
				} else {
					close = p.Read()
					if close.Type != TokenCBrack && !p.recovery {
						diags = append(diags, &hcl.Diagnostic{
							Severity: hcl.DiagError,
							Summary:  "Missing close bracket on index",
							Detail:   "The index operator must end with a closing bracket (\"]\").",
							Subject:  &close.Range,
						})
						close = p.recover(TokenCBrack)
					}
				}
				p.PopIncludeNewlines()

				if lit, isLit := keyExpr.(*LiteralValueExpr); isLit {
					litKey, _ := lit.Value(nil)
					rng := hcl.RangeBetween(open.Range, close.Range)
					step := hcl.TraverseIndex{
						Key:      litKey,
						SrcRange: rng,
					}
					ret = makeRelativeTraversal(ret, step, rng)
				} else {
					rng := hcl.RangeBetween(open.Range, close.Range)
					ret = &IndexExpr{
						Collection: ret,
						Key:        keyExpr,

						SrcRange:  rng,
						OpenRange: open.Range,
					}
				}
			}

		default:
			break Traversal
		}
	}

	return ret, diags
}

// makeRelativeTraversal takes an expression and a traverser and returns
// a traversal expression that combines the two. If the given expression
// is already a traversal, it is extended in place (mutating it) and
// returned. If it isn't, a new RelativeTraversalExpr is created and returned.
func makeRelativeTraversal(expr Expression, next hcl.Traverser, rng hcl.Range) Expression {
	switch texpr := expr.(type) {
	case *ScopeTraversalExpr:
		texpr.Traversal = append(texpr.Traversal, next)
		texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng)
		return texpr
	case *RelativeTraversalExpr:
		texpr.Traversal = append(texpr.Traversal, next)
		texpr.SrcRange = hcl.RangeBetween(texpr.SrcRange, rng)
		return texpr
	default:
		return &RelativeTraversalExpr{
			Source:    expr,
			Traversal: hcl.Traversal{next},
			SrcRange:  rng,
		}
	}
}

func (p *parser) parseExpressionTerm() (Expression, hcl.Diagnostics) {
	start := p.Peek()

	switch start.Type {
	case TokenOParen:
		p.Read() // eat open paren

		p.PushIncludeNewlines(false)

		expr, diags := p.ParseExpression()
		if diags.HasErrors() {
			// attempt to place the peeker after our closing paren
			// before we return, so that the next parser has some
			// chance of finding a valid expression.
			p.recover(TokenCParen)
			p.PopIncludeNewlines()
			return expr, diags
		}

		close := p.Peek()
		if close.Type != TokenCParen {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Unbalanced parentheses",
				Detail:   "Expected a closing parenthesis to terminate the expression.",
				Subject:  &close.Range,
				Context:  hcl.RangeBetween(start.Range, close.Range).Ptr(),
			})
			p.setRecovery()
		}

		p.Read() // eat closing paren
		p.PopIncludeNewlines()

		return expr, diags

	case TokenNumberLit:
		tok := p.Read() // eat number token

		numVal, diags := p.numberLitValue(tok)
		return &LiteralValueExpr{
			Val:      numVal,
			SrcRange: tok.Range,
		}, diags

	case TokenIdent:
		tok := p.Read() // eat identifier token

		if p.Peek().Type == TokenOParen {
			return p.finishParsingFunctionCall(tok)
		}

		name := string(tok.Bytes)
		switch name {
		case "true":
			return &LiteralValueExpr{
				Val:      cty.True,
				SrcRange: tok.Range,
			}, nil
		case "false":
			return &LiteralValueExpr{
				Val:      cty.False,
				SrcRange: tok.Range,
			}, nil
		case "null":
			return &LiteralValueExpr{
				Val:      cty.NullVal(cty.DynamicPseudoType),
				SrcRange: tok.Range,
			}, nil
		default:
			return &ScopeTraversalExpr{
				Traversal: hcl.Traversal{
					hcl.TraverseRoot{
						Name:     name,
						SrcRange: tok.Range,
					},
				},
				SrcRange: tok.Range,
			}, nil
		}

	case TokenOQuote, TokenOHeredoc:
		open := p.Read() // eat opening marker
		closer := p.oppositeBracket(open.Type)
		exprs, passthru, _, diags := p.parseTemplateInner(closer, tokenOpensFlushHeredoc(open))

		closeRange := p.PrevRange()

		if passthru {
			if len(exprs) != 1 {
				panic("passthru set with len(exprs) != 1")
			}
			return &TemplateWrapExpr{
				Wrapped:  exprs[0],
				SrcRange: hcl.RangeBetween(open.Range, closeRange),
			}, diags
		}

		return &TemplateExpr{
			Parts:    exprs,
			SrcRange: hcl.RangeBetween(open.Range, closeRange),
		}, diags

	case TokenMinus:
		tok := p.Read() // eat minus token

		// Important to use parseExpressionWithTraversals rather than parseExpression
		// here, otherwise we can capture a following binary expression into
		// our negation.
		// e.g. -46+5 should parse as (-46)+5, not -(46+5)
		operand, diags := p.parseExpressionWithTraversals()
		return &UnaryOpExpr{
			Op:  OpNegate,
			Val: operand,

			SrcRange:    hcl.RangeBetween(tok.Range, operand.Range()),
			SymbolRange: tok.Range,
		}, diags

	case TokenBang:
		tok := p.Read() // eat bang token

		// Important to use parseExpressionWithTraversals rather than parseExpression
		// here, otherwise we can capture a following binary expression into
		// our negation.
		operand, diags := p.parseExpressionWithTraversals()
		return &UnaryOpExpr{
			Op:  OpLogicalNot,
			Val: operand,

			SrcRange:    hcl.RangeBetween(tok.Range, operand.Range()),
			SymbolRange: tok.Range,
		}, diags

	case TokenOBrack:
		return p.parseTupleCons()

	case TokenOBrace:
		return p.parseObjectCons()

	default:
		var diags hcl.Diagnostics
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid expression",
				Detail:   "Expected the start of an expression, but found an invalid expression token.",
				Subject:  &start.Range,
			})
		}
		p.setRecovery()

		// Return a placeholder so that the AST is still structurally sound
		// even in the presence of parse errors.
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: start.Range,
		}, diags
	}
}

func (p *parser) numberLitValue(tok Token) (cty.Value, hcl.Diagnostics) {
	// The cty.ParseNumberVal is always the same behavior as converting a
	// string to a number, ensuring we always interpret decimal numbers in
	// the same way.
	numVal, err := cty.ParseNumberVal(string(tok.Bytes))
	if err != nil {
		ret := cty.UnknownVal(cty.Number)
		return ret, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Invalid number literal",
				// FIXME: not a very good error message, but convert only
				// gives us "a number is required", so not much help either.
				Detail:  "Failed to recognize the value of this number literal.",
				Subject: &tok.Range,
			},
		}
	}
	return numVal, nil
}

// finishParsingFunctionCall parses a function call assuming that the function
// name was already read, and so the peeker should be pointing at the opening
// parenthesis after the name.
func (p *parser) finishParsingFunctionCall(name Token) (Expression, hcl.Diagnostics) {
	openTok := p.Read()
	if openTok.Type != TokenOParen {
		// should never happen if callers behave
		panic("finishParsingFunctionCall called with non-parenthesis as next token")
	}

	var args []Expression
	var diags hcl.Diagnostics
	var expandFinal bool
	var closeTok Token

	// Arbitrary newlines are allowed inside the function call parentheses.
	p.PushIncludeNewlines(false)

Token:
	for {
		tok := p.Peek()

		if tok.Type == TokenCParen {
			closeTok = p.Read() // eat closing paren
			break Token
		}

		arg, argDiags := p.ParseExpression()
		args = append(args, arg)
		diags = append(diags, argDiags...)
		if p.recovery && argDiags.HasErrors() {
			// if there was a parse error in the argument then we've
			// probably been left in a weird place in the token stream,
			// so we'll bail out with a partial argument list.
			p.recover(TokenCParen)
			break Token
		}

		sep := p.Read()
		if sep.Type == TokenCParen {
			closeTok = sep
			break Token
		}

		if sep.Type == TokenEllipsis {
			expandFinal = true

			if p.Peek().Type != TokenCParen {
				if !p.recovery {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Missing closing parenthesis",
						Detail:   "An expanded function argument (with ...) must be immediately followed by closing parentheses.",
						Subject:  &sep.Range,
						Context:  hcl.RangeBetween(name.Range, sep.Range).Ptr(),
					})
				}
				closeTok = p.recover(TokenCParen)
			} else {
				closeTok = p.Read() // eat closing paren
			}
			break Token
		}

		if sep.Type != TokenComma {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Missing argument separator",
				Detail:   "A comma is required to separate each function argument from the next.",
				Subject:  &sep.Range,
				Context:  hcl.RangeBetween(name.Range, sep.Range).Ptr(),
			})
			closeTok = p.recover(TokenCParen)
			break Token
		}

		if p.Peek().Type == TokenCParen {
			// A trailing comma after the last argument gets us in here.
			closeTok = p.Read() // eat closing paren
			break Token
		}

	}

	p.PopIncludeNewlines()

	return &FunctionCallExpr{
		Name: string(name.Bytes),
		Args: args,

		ExpandFinal: expandFinal,

		NameRange:       name.Range,
		OpenParenRange:  openTok.Range,
		CloseParenRange: closeTok.Range,
	}, diags
}

func (p *parser) parseTupleCons() (Expression, hcl.Diagnostics) {
	open := p.Read()
	if open.Type != TokenOBrack {
		// Should never happen if callers are behaving
		panic("parseTupleCons called without peeker pointing to open bracket")
	}

	p.PushIncludeNewlines(false)
	defer p.PopIncludeNewlines()

	if forKeyword.TokenMatches(p.Peek()) {
		return p.finishParsingForExpr(open)
	}

	var close Token

	var diags hcl.Diagnostics
	var exprs []Expression

	for {
		next := p.Peek()
		if next.Type == TokenCBrack {
			close = p.Read() // eat closer
			break
		}

		expr, exprDiags := p.ParseExpression()
		exprs = append(exprs, expr)
		diags = append(diags, exprDiags...)

		if p.recovery && exprDiags.HasErrors() {
			// If expression parsing failed then we are probably in a strange
			// place in the token stream, so we'll bail out and try to reset
			// to after our closing bracket to allow parsing to continue.
			close = p.recover(TokenCBrack)
			break
		}

		next = p.Peek()
		if next.Type == TokenCBrack {
			close = p.Read() // eat closer
			break
		}

		if next.Type != TokenComma {
			if !p.recovery {
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Missing item separator",
					Detail:   "Expected a comma to mark the beginning of the next item.",
					Subject:  &next.Range,
					Context:  hcl.RangeBetween(open.Range, next.Range).Ptr(),
				})
			}
			close = p.recover(TokenCBrack)
			break
		}

		p.Read() // eat comma

	}

	return &TupleConsExpr{
		Exprs: exprs,

		SrcRange:  hcl.RangeBetween(open.Range, close.Range),
		OpenRange: open.Range,
	}, diags
}

func (p *parser) parseObjectCons() (Expression, hcl.Diagnostics) {
	open := p.Read()
	if open.Type != TokenOBrace {
		// Should never happen if callers are behaving
		panic("parseObjectCons called without peeker pointing to open brace")
	}

	// We must temporarily stop looking at newlines here while we check for
	// a "for" keyword, since for expressions are _not_ newline-sensitive,
	// even though object constructors are.
	p.PushIncludeNewlines(false)
	isFor := forKeyword.TokenMatches(p.Peek())
	p.PopIncludeNewlines()
	if isFor {
		return p.finishParsingForExpr(open)
	}

	p.PushIncludeNewlines(true)
	defer p.PopIncludeNewlines()

	var close Token

	var diags hcl.Diagnostics
	var items []ObjectConsItem

	for {
		next := p.Peek()
		if next.Type == TokenNewline {
			p.Read() // eat newline
			continue
		}

		if next.Type == TokenCBrace {
			close = p.Read() // eat closer
			break
		}

		var key Expression
		var keyDiags hcl.Diagnostics
		key, keyDiags = p.ParseExpression()
		diags = append(diags, keyDiags...)

		if p.recovery && keyDiags.HasErrors() {
			// If expression parsing failed then we are probably in a strange
			// place in the token stream, so we'll bail out and try to reset
			// to after our closing brace to allow parsing to continue.
			close = p.recover(TokenCBrace)
			break
		}

		// We wrap up the key expression in a special wrapper that deals
		// with our special case that naked identifiers as object keys
		// are interpreted as literal strings.
		key = &ObjectConsKeyExpr{Wrapped: key}

		next = p.Peek()
		if next.Type != TokenEqual && next.Type != TokenColon {
			if !p.recovery {
				switch next.Type {
				case TokenNewline, TokenComma:
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Missing attribute value",
						Detail:   "Expected an attribute value, introduced by an equals sign (\"=\").",
						Subject:  &next.Range,
						Context:  hcl.RangeBetween(open.Range, next.Range).Ptr(),
					})
				case TokenIdent:
					// Although this might just be a plain old missing equals
					// sign before a reference, one way to get here is to try
					// to write an attribute name containing a period followed
					// by a digit, which was valid in HCL1, like this:
					//     foo1.2_bar = "baz"
					// We can't know exactly what the user intended here, but
					// we'll augment our message with an extra hint in this case
					// in case it is helpful.
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Missing key/value separator",
						Detail:   "Expected an equals sign (\"=\") to mark the beginning of the attribute value. If you intended to given an attribute name containing periods or spaces, write the name in quotes to create a string literal.",
						Subject:  &next.Range,
						Context:  hcl.RangeBetween(open.Range, next.Range).Ptr(),
					})
				default:
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Missing key/value separator",
						Detail:   "Expected an equals sign (\"=\") to mark the beginning of the attribute value.",
						Subject:  &next.Range,
						Context:  hcl.RangeBetween(open.Range, next.Range).Ptr(),
					})
				}
			}
			close = p.recover(TokenCBrace)
			break
		}

		p.Read() // eat equals sign or colon

		value, valueDiags := p.ParseExpression()
		diags = append(diags, valueDiags...)

		if p.recovery && valueDiags.HasErrors() {
			// If expression parsing failed then we are probably in a strange
			// place in the token stream, so we'll bail out and try to reset
			// to after our closing brace to allow parsing to continue.
			close = p.recover(TokenCBrace)
			break
		}

		items = append(items, ObjectConsItem{
			KeyExpr:   key,
			ValueExpr: value,
		})

		next = p.Peek()
		if next.Type == TokenCBrace {
			close = p.Read() // eat closer
			break
		}

		if next.Type != TokenComma && next.Type != TokenNewline {
			if !p.recovery {
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Missing attribute separator",
					Detail:   "Expected a newline or comma to mark the beginning of the next attribute.",
					Subject:  &next.Range,
					Context:  hcl.RangeBetween(open.Range, next.Range).Ptr(),
				})
			}
			close = p.recover(TokenCBrace)
			break
		}

		p.Read() // eat comma or newline

	}

	return &ObjectConsExpr{
		Items: items,

		SrcRange:  hcl.RangeBetween(open.Range, close.Range),
		OpenRange: open.Range,
	}, diags
}

func (p *parser) finishParsingForExpr(open Token) (Expression, hcl.Diagnostics) {
	p.PushIncludeNewlines(false)
	defer p.PopIncludeNewlines()
	introducer := p.Read()
	if !forKeyword.TokenMatches(introducer) {
		// Should never happen if callers are behaving
		panic("finishParsingForExpr called without peeker pointing to 'for' identifier")
	}

	var makeObj bool
	var closeType TokenType
	switch open.Type {
	case TokenOBrace:
		makeObj = true
		closeType = TokenCBrace
	case TokenOBrack:
		makeObj = false // making a tuple
		closeType = TokenCBrack
	default:
		// Should never happen if callers are behaving
		panic("finishParsingForExpr called with invalid open token")
	}

	var diags hcl.Diagnostics
	var keyName, valName string

	if p.Peek().Type != TokenIdent {
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "For expression requires variable name after 'for'.",
				Subject:  p.Peek().Range.Ptr(),
				Context:  hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
			})
		}
		close := p.recover(closeType)
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: hcl.RangeBetween(open.Range, close.Range),
		}, diags
	}

	valName = string(p.Read().Bytes)

	if p.Peek().Type == TokenComma {
		// What we just read was actually the key, then.
		keyName = valName
		p.Read() // eat comma

		if p.Peek().Type != TokenIdent {
			if !p.recovery {
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid 'for' expression",
					Detail:   "For expression requires value variable name after comma.",
					Subject:  p.Peek().Range.Ptr(),
					Context:  hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
				})
			}
			close := p.recover(closeType)
			return &LiteralValueExpr{
				Val:      cty.DynamicVal,
				SrcRange: hcl.RangeBetween(open.Range, close.Range),
			}, diags
		}

		valName = string(p.Read().Bytes)
	}

	if !inKeyword.TokenMatches(p.Peek()) {
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "For expression requires the 'in' keyword after its name declarations.",
				Subject:  p.Peek().Range.Ptr(),
				Context:  hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
			})
		}
		close := p.recover(closeType)
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: hcl.RangeBetween(open.Range, close.Range),
		}, diags
	}
	p.Read() // eat 'in' keyword

	collExpr, collDiags := p.ParseExpression()
	diags = append(diags, collDiags...)
	if p.recovery && collDiags.HasErrors() {
		close := p.recover(closeType)
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: hcl.RangeBetween(open.Range, close.Range),
		}, diags
	}

	if p.Peek().Type != TokenColon {
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "For expression requires a colon after the collection expression.",
				Subject:  p.Peek().Range.Ptr(),
				Context:  hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
			})
		}
		close := p.recover(closeType)
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: hcl.RangeBetween(open.Range, close.Range),
		}, diags
	}
	p.Read() // eat colon

	var keyExpr, valExpr Expression
	var keyDiags, valDiags hcl.Diagnostics
	valExpr, valDiags = p.ParseExpression()
	if p.Peek().Type == TokenFatArrow {
		// What we just parsed was actually keyExpr
		p.Read() // eat the fat arrow
		keyExpr, keyDiags = valExpr, valDiags

		valExpr, valDiags = p.ParseExpression()
	}
	diags = append(diags, keyDiags...)
	diags = append(diags, valDiags...)
	if p.recovery && (keyDiags.HasErrors() || valDiags.HasErrors()) {
		close := p.recover(closeType)
		return &LiteralValueExpr{
			Val:      cty.DynamicVal,
			SrcRange: hcl.RangeBetween(open.Range, close.Range),
		}, diags
	}

	group := false
	var ellipsis Token
	if p.Peek().Type == TokenEllipsis {
		ellipsis = p.Read()
		group = true
	}

	var condExpr Expression
	var condDiags hcl.Diagnostics
	if ifKeyword.TokenMatches(p.Peek()) {
		p.Read() // eat "if"
		condExpr, condDiags = p.ParseExpression()
		diags = append(diags, condDiags...)
		if p.recovery && condDiags.HasErrors() {
			close := p.recover(p.oppositeBracket(open.Type))
			return &LiteralValueExpr{
				Val:      cty.DynamicVal,
				SrcRange: hcl.RangeBetween(open.Range, close.Range),
			}, diags
		}
	}

	var close Token
	if p.Peek().Type == closeType {
		close = p.Read()
	} else {
		if !p.recovery {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "Extra characters after the end of the 'for' expression.",
				Subject:  p.Peek().Range.Ptr(),
				Context:  hcl.RangeBetween(open.Range, p.Peek().Range).Ptr(),
			})
		}
		close = p.recover(closeType)
	}

	if !makeObj {
		if keyExpr != nil {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "Key expression is not valid when building a tuple.",
				Subject:  keyExpr.Range().Ptr(),
				Context:  hcl.RangeBetween(open.Range, close.Range).Ptr(),
			})
		}

		if group {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "Grouping ellipsis (...) cannot be used when building a tuple.",
				Subject:  &ellipsis.Range,
				Context:  hcl.RangeBetween(open.Range, close.Range).Ptr(),
			})
		}
	} else {
		if keyExpr == nil {
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid 'for' expression",
				Detail:   "Key expression is required when building an object.",
				Subject:  valExpr.Range().Ptr(),
				Context:  hcl.RangeBetween(open.Range, close.Range).Ptr(),
			})
		}
	}

	return &ForExpr{
		KeyVar:   keyName,
		ValVar:   valName,
		CollExpr: collExpr,
		KeyExpr:  keyExpr,
		ValExpr:  valExpr,
		CondExpr: condExpr,
		Group:    group,

		SrcRange:   hcl.RangeBetween(open.Range, close.Range),
		OpenRange:  open.Range,
		CloseRange: close.Range,
	}, diags
}

// parseQuotedStringLiteral is a helper for parsing quoted strings that
// aren't allowed to contain any interpolations, such as block labels.
func (p *parser) parseQuotedStringLiteral() (string, hcl.Range, hcl.Diagnostics) {
	oQuote := p.Read()
	if oQuote.Type != TokenOQuote {
		return "", oQuote.Range, hcl.Diagnostics{
			{
				Severity: hcl.DiagError,
				Summary:  "Invalid string literal",
				Detail:   "A quoted string is required here.",
				Subject:  &oQuote.Range,
			},
		}
	}

	var diags hcl.Diagnostics
	ret := &bytes.Buffer{}
	var cQuote Token

Token:
	for {
		tok := p.Read()
		switch tok.Type {

		case TokenCQuote:
			cQuote = tok
			break Token

		case TokenQuotedLit:
			s, sDiags := p.decodeStringLit(tok)
			diags = append(diags, sDiags...)
			ret.WriteString(s)

		case TokenTemplateControl, TokenTemplateInterp:
			which := "$"
			if tok.Type == TokenTemplateControl {
				which = "%"
			}

			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid string literal",
				Detail: fmt.Sprintf(
					"Template sequences are not allowed in this string. To include a literal %q, double it (as \"%s%s\") to escape it.",
					which, which, which,
				),
				Subject: &tok.Range,
				Context: hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
			})

			// Now that we're returning an error callers won't attempt to use
			// the result for any real operations, but they might try to use
			// the partial AST for other analyses, so we'll leave a marker
			// to indicate that there was something invalid in the string to
			// help avoid misinterpretation of the partial result
			ret.WriteString(which)
			ret.WriteString("{ ... }")

			p.recover(TokenTemplateSeqEnd) // we'll try to keep parsing after the sequence ends

		case TokenEOF:
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Unterminated string literal",
				Detail:   "Unable to find the closing quote mark before the end of the file.",
				Subject:  &tok.Range,
				Context:  hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
			})
			break Token

		default:
			// Should never happen, as long as the scanner is behaving itself
			diags = append(diags, &hcl.Diagnostic{
				Severity: hcl.DiagError,
				Summary:  "Invalid string literal",
				Detail:   "This item is not valid in a string literal.",
				Subject:  &tok.Range,
				Context:  hcl.RangeBetween(oQuote.Range, tok.Range).Ptr(),
			})
			p.recover(TokenCQuote)
			break Token

		}

	}

	return ret.String(), hcl.RangeBetween(oQuote.Range, cQuote.Range), diags
}

// decodeStringLit processes the given token, which must be either a
// TokenQuotedLit or a TokenStringLit, returning the string resulting from
// resolving any escape sequences.
//
// If any error diagnostics are returned, the returned string may be incomplete
// or otherwise invalid.
func (p *parser) decodeStringLit(tok Token) (string, hcl.Diagnostics) {
	var quoted bool
	switch tok.Type {
	case TokenQuotedLit:
		quoted = true
	case TokenStringLit:
		quoted = false
	default:
		panic("decodeQuotedLit can only be used with TokenStringLit and TokenQuotedLit tokens")
	}
	var diags hcl.Diagnostics

	ret := make([]byte, 0, len(tok.Bytes))
	slices := scanStringLit(tok.Bytes, quoted)

	// We will mutate rng constantly as we walk through our token slices below.
	// Any diagnostics must take a copy of this rng rather than simply pointing
	// to it, e.g. by using rng.Ptr() rather than &rng.
	rng := tok.Range
	rng.End = rng.Start

Slices:
	for _, slice := range slices {
		if len(slice) == 0 {
			continue
		}

		// Advance the start of our range to where the previous token ended
		rng.Start = rng.End

		// Advance the end of our range to after our token.
		b := slice
		for len(b) > 0 {
			adv, ch, _ := textseg.ScanGraphemeClusters(b, true)
			rng.End.Byte += adv
			switch ch[0] {
			case '\r', '\n':
				rng.End.Line++
				rng.End.Column = 1
			default:
				rng.End.Column++
			}
			b = b[adv:]
		}

	TokenType:
		switch slice[0] {
		case '\\':
			if !quoted {
				// If we're not in quoted mode then just treat this token as
				// normal. (Slices can still start with backslash even if we're
				// not specifically looking for backslash sequences.)
				break TokenType
			}
			if len(slice) < 2 {
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid escape sequence",
					Detail:   "Backslash must be followed by an escape sequence selector character.",
					Subject:  rng.Ptr(),
				})
				break TokenType
			}

			switch slice[1] {

			case 'n':
				ret = append(ret, '\n')
				continue Slices
			case 'r':
				ret = append(ret, '\r')
				continue Slices
			case 't':
				ret = append(ret, '\t')
				continue Slices
			case '"':
				ret = append(ret, '"')
				continue Slices
			case '\\':
				ret = append(ret, '\\')
				continue Slices
			case 'u', 'U':
				if slice[1] == 'u' && len(slice) != 6 {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid escape sequence",
						Detail:   "The \\u escape sequence must be followed by four hexadecimal digits.",
						Subject:  rng.Ptr(),
					})
					break TokenType
				} else if slice[1] == 'U' && len(slice) != 10 {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid escape sequence",
						Detail:   "The \\U escape sequence must be followed by eight hexadecimal digits.",
						Subject:  rng.Ptr(),
					})
					break TokenType
				}

				numHex := string(slice[2:])
				num, err := strconv.ParseUint(numHex, 16, 32)
				if err != nil {
					// Should never happen because the scanner won't match
					// a sequence of digits that isn't valid.
					panic(err)
				}

				r := rune(num)
				l := utf8.RuneLen(r)
				if l == -1 {
					diags = append(diags, &hcl.Diagnostic{
						Severity: hcl.DiagError,
						Summary:  "Invalid escape sequence",
						Detail:   fmt.Sprintf("Cannot encode character U+%04x in UTF-8.", num),
						Subject:  rng.Ptr(),
					})
					break TokenType
				}
				for i := 0; i < l; i++ {
					ret = append(ret, 0)
				}
				rb := ret[len(ret)-l:]
				utf8.EncodeRune(rb, r)

				continue Slices

			default:
				diags = append(diags, &hcl.Diagnostic{
					Severity: hcl.DiagError,
					Summary:  "Invalid escape sequence",
					Detail:   fmt.Sprintf("The symbol %q is not a valid escape sequence selector.", slice[1:]),
					Subject:  rng.Ptr(),
				})
				ret = append(ret, slice[1:]...)
				continue Slices
			}

		case '$', '%':
			if len(slice) != 3 {
				// Not long enough to be our escape sequence, so it's literal.
				break TokenType
			}

			if slice[1] == slice[0] && slice[2] == '{' {
				ret = append(ret, slice[0])
				ret = append(ret, '{')
				continue Slices
			}

			break TokenType
		}

		// If we fall out here or break out of here from the switch above
		// then this slice is just a literal.
		ret = append(ret, slice...)
	}

	return string(ret), diags
}

// setRecovery turns on recovery mode without actually doing any recovery.
// This can be used when a parser knowingly leaves the peeker in a useless
// place and wants to suppress errors that might result from that decision.
func (p *parser) setRecovery() {
	p.recovery = true
}

// recover seeks forward in the token stream until it finds TokenType "end",
// then returns with the peeker pointed at the following token.
//
// If the given token type is a bracketer, this function will additionally
// count nested instances of the brackets to try to leave the peeker at
// the end of the _current_ instance of that bracketer, skipping over any
// nested instances. This is a best-effort operation and may have
// unpredictable results on input with bad bracketer nesting.
func (p *parser) recover(end TokenType) Token {
	start := p.oppositeBracket(end)
	p.recovery = true

	nest := 0
	for {
		tok := p.Read()
		ty := tok.Type
		if end == TokenTemplateSeqEnd && ty == TokenTemplateControl {
			// normalize so that our matching behavior can work, since
			// TokenTemplateControl/TokenTemplateInterp are asymmetrical
			// with TokenTemplateSeqEnd and thus we need to count both
			// openers if that's the closer we're looking for.
			ty = TokenTemplateInterp
		}

		switch ty {
		case start:
			nest++
		case end:
			if nest < 1 {
				return tok
			}

			nest--
		case TokenEOF:
			return tok
		}
	}
}

// recoverOver seeks forward in the token stream until it finds a block
// starting with TokenType "start", then finds the corresponding end token,
// leaving the peeker pointed at the token after that end token.
//
// The given token type _must_ be a bracketer. For example, if the given
// start token is TokenOBrace then the parser will be left at the _end_ of
// the next brace-delimited block encountered, or at EOF if no such block
// is found or it is unclosed.
func (p *parser) recoverOver(start TokenType) {
	end := p.oppositeBracket(start)

	// find the opening bracket first
Token:
	for {
		tok := p.Read()
		switch tok.Type {
		case start, TokenEOF:
			break Token
		}
	}

	// Now use our existing recover function to locate the _end_ of the
	// container we've found.
	p.recover(end)
}

func (p *parser) recoverAfterBodyItem() {
	p.recovery = true
	var open []TokenType

Token:
	for {
		tok := p.Read()

		switch tok.Type {

		case TokenNewline:
			if len(open) == 0 {
				break Token
			}

		case TokenEOF:
			break Token

		case TokenOBrace, TokenOBrack, TokenOParen, TokenOQuote, TokenOHeredoc, TokenTemplateInterp, TokenTemplateControl:
			open = append(open, tok.Type)

		case TokenCBrace, TokenCBrack, TokenCParen, TokenCQuote, TokenCHeredoc:
			opener := p.oppositeBracket(tok.Type)
			for len(open) > 0 && open[len(open)-1] != opener {
				open = open[:len(open)-1]
			}
			if len(open) > 0 {
				open = open[:len(open)-1]
			}

		case TokenTemplateSeqEnd:
			for len(open) > 0 && open[len(open)-1] != TokenTemplateInterp && open[len(open)-1] != TokenTemplateControl {
				open = open[:len(open)-1]
			}
			if len(open) > 0 {
				open = open[:len(open)-1]
			}

		}
	}
}

// oppositeBracket finds the bracket that opposes the given bracketer, or
// NilToken if the given token isn't a bracketer.
//
// "Bracketer", for the sake of this function, is one end of a matching
// open/close set of tokens that establish a bracketing context.
func (p *parser) oppositeBracket(ty TokenType) TokenType {
	switch ty {

	case TokenOBrace:
		return TokenCBrace
	case TokenOBrack:
		return TokenCBrack
	case TokenOParen:
		return TokenCParen
	case TokenOQuote:
		return TokenCQuote
	case TokenOHeredoc:
		return TokenCHeredoc

	case TokenCBrace:
		return TokenOBrace
	case TokenCBrack:
		return TokenOBrack
	case TokenCParen:
		return TokenOParen
	case TokenCQuote:
		return TokenOQuote
	case TokenCHeredoc:
		return TokenOHeredoc

	case TokenTemplateControl:
		return TokenTemplateSeqEnd
	case TokenTemplateInterp:
		return TokenTemplateSeqEnd
	case TokenTemplateSeqEnd:
		// This is ambigous, but we return Interp here because that's
		// what's assumed by the "recover" method.
		return TokenTemplateInterp

	default:
		return TokenNil
	}
}

func errPlaceholderExpr(rng hcl.Range) Expression {
	return &LiteralValueExpr{
		Val:      cty.DynamicVal,
		SrcRange: rng,
	}
}