aboutsummaryrefslogtreecommitdiffhomepage
path: root/tap_google_sheets/schema.py
blob: d4fead52271566336799f5f851e29bdca9a340c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import json
from collections import OrderedDict
import singer
from singer import metadata
from tap_google_sheets.streams import STREAMS

LOGGER = singer.get_logger()

# Reference:
# https://github.com/singer-io/getting-started/blob/master/docs/DISCOVERY_MODE.md#Metadata

# Convert column index to column letter
def colnum_string(num):
    string = ""
    while num > 0:
        num, remainder = divmod(num - 1, 26)
        string = chr(65 + remainder) + string
    return string


# Create sheet_metadata_json with columns from sheet
def get_sheet_schema_columns(sheet):
    sheet_json_schema = OrderedDict()
    data = next(iter(sheet.get('data', [])), {})
    row_data = data.get('rowData', [])
    # spreadsheet is an OrderedDict, with orderd sheets and rows in the repsonse

    headers = row_data[0].get('values', [])
    first_values = row_data[1].get('values', [])
    # LOGGER.info('first_values = {}'.format(json.dumps(first_values, indent=2, sort_keys=True)))

    sheet_json_schema['type'] = 'object'
    sheet_json_schema['additionalProperties'] = False
    sheet_json_schema = {
        'type': 'object',
        'additionalProperties': False,
        'properties': {
            '__sdc_spreadsheet_id': {
                'type': ['null', 'string']
            },
            '__sdc_sheet_id': {
                'type': ['null', 'integer']
            },
            '__sdc_row': {
                'type': ['null', 'integer']
            }
        }
    }

    header_list = [] # used for checking uniqueness
    columns = []
    prior_header = None
    i = 0
    skipped = 0
    # Read column headers until end or 2 consecutive skipped headers
    for header in headers:
        # LOGGER.info('header = {}'.format(json.dumps(header, indent=2, sort_keys=True)))
        column_index = i + 1
        column_letter = colnum_string(column_index)
        header_value = header.get('formattedValue')
        if header_value: # NOT skipped
            column_is_skipped = False
            skipped = 0
            column_name = '{}'.format(header_value)
            if column_name in header_list:
                raise Exception('DUPLICATE HEADER ERROR: {}'.format(column_name))
            header_list.append(column_name)

            first_value = first_values[i]

            column_effective_value = first_value.get('effectiveValue', {})
            for key in column_effective_value.keys():
                if key in ('numberValue', 'stringValue', 'boolValue', 'errorType', 'formulaType'):
                    column_effective_value_type = key

            column_number_format = first_values[i].get('effectiveFormat', {}).get(
                'numberFormat', {})
            column_number_format_type = column_number_format.get('type')

            # Determine datatype for sheet_json_schema
            #
            # column_effective_value_type = numberValue, stringValue, boolValue;
            #  INVALID: errorType, formulaType
            #  https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/other#ExtendedValue
            #
            # column_number_format_type = UNEPECIFIED, TEXT, NUMBER, PERCENT, CURRENCY, DATE,
            #   TIME, DATE_TIME, SCIENTIFIC
            #  https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets/cells#NumberFormatType
            #
            column_format = None # Default
            # column_multiple_of = None # Default
            if column_effective_value_type == 'stringValue':
                column_type = ['null', 'string']
                column_gs_type = 'stringValue'
            elif column_effective_value_type == 'boolValue':
                column_type = ['null', 'boolean', 'string']
                column_gs_type = 'boolValue'
            elif column_effective_value_type == 'numberValue':
                if column_number_format_type == 'DATE_TIME':
                    column_type = ['null', 'string']
                    column_format = 'date-time'
                    column_gs_type = 'numberType.DATE_TIME'
                elif column_number_format_type == 'DATE':
                    column_type = ['null', 'string']
                    column_format = 'date'
                    column_gs_type = 'numberType.DATE'
                elif column_number_format_type == 'TIME':
                    column_type = ['null', 'string']
                    column_format = 'time'
                    column_gs_type = 'numberType.TIME'
                elif column_number_format_type == 'TEXT':
                    column_type = ['null', 'string']
                    column_gs_type = 'stringValue'
                else:
                    column_type = ['null', 'number', 'string']
                    column_gs_type = 'numberType'
            elif column_effective_value_type in ('formulaValue', 'errorValue'):
                raise Exception('INVALID DATA TYPE ERROR: {}, value: {}'.format(column_name, \
                    column_effective_value_type))
        else: # skipped
            column_is_skipped = True
            skipped = skipped + 1
            column_index_str = str(column_index).zfill(2)
            column_name = '__sdc_skip_col_{}'.format(column_index_str)
            column_type = ['null', 'string']
            column_format = None
            column_gs_type = 'stringValue'

        if skipped >= 2:
            # skipped = 2 consecutive skipped headers
            # Remove prior_header column_name
            sheet_json_schema['properties'].pop(prior_header, None)
            break

        else:
            column = {}
            column = {
                'columnIndex': column_index,
                'columnLetter': column_letter,
                'columnName': column_name,
                'columnType': column_gs_type,
                'columnSkipped': column_is_skipped
            }
            columns.append(column)

            sheet_json_schema['properties'][column_name] = column
            sheet_json_schema['properties'][column_name]['type'] = column_type
            if column_format:
                sheet_json_schema['properties'][column_name]['format'] = column_format

        prior_header = column_name
        i = i + 1

    return sheet_json_schema, columns


def get_sheet_metadata(sheet, spreadsheet_id, client):
    sheet_id = sheet.get('properties', {}).get('sheetId')
    sheet_title = sheet.get('properties', {}).get('title')
    LOGGER.info('sheet_id = {}, sheet_title = {}'.format(sheet_id, sheet_title))

    stream_name = 'sheet_metadata'
    stream_metadata = STREAMS.get(stream_name)
    api = stream_metadata.get('api', 'sheets')
    params = stream_metadata.get('params', {})
    querystring = '&'.join(['%s=%s' % (key, value) for (key, value) in \
        params.items()]).replace('{sheet_title}', sheet_title)
    path = '{}?{}'.format(stream_metadata.get('path').replace('{spreadsheet_id}', \
        spreadsheet_id), querystring)

    sheet_md_results = client.get(path=path, api=api, endpoint=stream_name)
    sheet_cols = sheet_md_results.get('sheets')[0]
    sheet_schema, columns = get_sheet_schema_columns(sheet_cols)

    return sheet_schema, columns


def get_abs_path(path):
    return os.path.join(os.path.dirname(os.path.realpath(__file__)), path)

def get_schemas(client, spreadsheet_id):
    schemas = {}
    field_metadata = {}

    for stream_name, stream_metadata in STREAMS.items():
        schema_path = get_abs_path('schemas/{}.json'.format(stream_name))
        with open(schema_path) as file:
            schema = json.load(file)
        schemas[stream_name] = schema
        mdata = metadata.new()

        # Documentation:
        # https://github.com/singer-io/getting-started/blob/master/docs/DISCOVERY_MODE.md#singer-python-helper-functions
        # Reference:
        # https://github.com/singer-io/singer-python/blob/master/singer/metadata.py#L25-L44
        mdata = metadata.get_standard_metadata(
            schema=schema,
            key_properties=stream_metadata.get('key_properties', None),
            valid_replication_keys=stream_metadata.get('replication_keys', None),
            replication_method=stream_metadata.get('replication_method', None)
        )
        field_metadata[stream_name] = mdata

        if stream_name == 'spreadsheet_metadata':
            api = stream_metadata.get('api', 'sheets')
            params = stream_metadata.get('params', {})
            querystring = '&'.join(['%s=%s' % (key, value) for (key, value) in params.items()])
            path = '{}?{}'.format(stream_metadata.get('path').replace('{spreadsheet_id}', \
                spreadsheet_id), querystring)

            spreadsheet_md_results = client.get(path=path, params=querystring, api=api, \
                endpoint=stream_name)

            sheets = spreadsheet_md_results.get('sheets')
            if sheets:
                for sheet in sheets:
                    sheet_schema, columns = get_sheet_metadata(sheet, spreadsheet_id, client)
                    LOGGER.info('columns = {}'.format(columns))

                    sheet_title = sheet.get('properties', {}).get('title')
                    schemas[sheet_title] = sheet_schema
                    sheet_mdata = metadata.new()
                    sheet_mdata = metadata.get_standard_metadata(
                        schema=sheet_schema,
                        key_properties=['__sdc_row'],
                        valid_replication_keys=None,
                        replication_method='FULL_TABLE'
                    )
                    field_metadata[sheet_title] = sheet_mdata

    return schemas, field_metadata