/* * Detects entropy from a string. * * Formats include: * binary [0-1] * base 6 [0-5] * dice 6 [1-6] * decimal [0-9] * hexadecimal [0-9A-F] * card [A2-9TJQK][CDHS] * * Automatically uses lowest entropy to avoid issues such as interpretting 0101 * as hexadecimal which would be 16 bits when really it's only 4 bits of binary * entropy. */ window.Entropy = new (function() { var TWO = new BigInteger(2); // matchers returns an array of the matched events for each type of entropy. // eg // matchers.binary("010") returns ["0", "1", "0"] // matchers.binary("a10") returns ["1", "0"] // matchers.hex("a10") returns ["a", "1", "0"] var matchers = { binary: function(str) { return str.match(/[0-1]/gi) || []; }, base6: function(str) { return str.match(/[0-5]/gi) || []; }, dice: function(str) { return str.match(/[1-6]/gi) || []; // ie dice numbers }, base10: function(str) { return str.match(/[0-9]/gi) || []; }, hex: function(str) { return str.match(/[0-9A-F]/gi) || []; }, card: function(str) { // Format is NumberSuit, eg // AH ace of hearts // 8C eight of clubs // TD ten of diamonds // JS jack of spades // QH queen of hearts // KC king of clubs return str.match(/([A2-9TJQK][CDHS])/gi) || []; } } // Convert array of cards from ["ac", "4d", "ks"] // to numbers between 0 and 51 [0, 16, 51] function convertCardsToInts(cards) { var ints = []; var values = "a23456789tjqk"; var suits = "cdhs"; for (var i=0; i -1) { newParts[i] = base.parts[i]; newInts[i] = base.ints[i]; } else { newParts[i] = "0"; newInts[i] = 0; } } base.str = "base 6 (dice)"; base.ints = newInts; base.parts = newParts; base.matcher = matchers.base6; } // Detect empty entropy if (base.parts.length == 0) { return { binaryStr: "", cleanStr: "", cleanHtml: "", base: base, }; } // Convert base.ints to BigInteger. // Due to using unusual bases, eg cards of base52, this is not as simple as // using BigInteger.parse() var entropyInt = BigInteger.ZERO; for (var i=base.ints.length-1; i>=0; i--) { var thisInt = BigInteger.parse(base.ints[i]); var power = (base.ints.length - 1) - i; var additionalEntropy = BigInteger.parse(base.asInt).pow(power).multiply(thisInt); entropyInt = entropyInt.add(additionalEntropy); } // Convert entropy to binary var entropyBin = entropyInt.toString(2); // If the first integer is small, it must be padded with zeros. // Otherwise the chance of the first bit being 1 is 100%, which is // obviously incorrect. // This is not perfect for non-2^n bases. var expectedBits = Math.floor(base.parts.length * Math.log2(base.asInt)); while (entropyBin.length < expectedBits) { entropyBin = "0" + entropyBin; } // Calculate the number of bits per event var bitsPerEvent = Math.log2(base.asInt); // Cards binary must be handled differently, since they're not replaced if (base.asInt == 52) { var cardEntropy = processCardEntropy(base.parts); entropyBin = cardEntropy.binaryStr; bitsPerEvent = cardEntropy.bitsPerEvent; } // Supply a 'filtered' entropy string for display purposes var entropyClean = base.parts.join(""); var entropyHtml = base.parts.join(""); if (base.asInt == 52) { entropyClean = base.parts.join(" ").toUpperCase(); entropyClean = entropyClean.replace(/C/g, "\u2663"); entropyClean = entropyClean.replace(/D/g, "\u2666"); entropyClean = entropyClean.replace(/H/g, "\u2665"); entropyClean = entropyClean.replace(/S/g, "\u2660"); entropyHtml = base.parts.join(" ").toUpperCase(); entropyHtml = entropyHtml.replace(/C/g, "\u2663"); entropyHtml = entropyHtml.replace(/D/g, "\u2666"); entropyHtml = entropyHtml.replace(/H/g, "\u2665"); entropyHtml = entropyHtml.replace(/S/g, "\u2660"); } // Return the result var e = { binaryStr: entropyBin, cleanStr: entropyClean, cleanHtml: entropyHtml, bitsPerEvent: bitsPerEvent, base: base, } return e; } function getSortedDeck() { var s = []; var suits = "CDHS"; var values = "A23456789TJQK"; for (var i=0; i 0) { var ints = binaryMatches.map(function(i) { return parseInt(i, 2) }); return { ints: ints, parts: binaryMatches, matcher: matchers.binary, asInt: 2, str: "binary", } } var cardMatches = matchers.card(str); if (cardMatches.length >= hexMatches.length / 2) { var ints = convertCardsToInts(cardMatches); return { ints: ints, parts: cardMatches, matcher: matchers.card, asInt: 52, str: "card", } } var diceMatches = matchers.dice(str); if (diceMatches.length == hexMatches.length && hexMatches.length > 0) { var ints = diceMatches.map(function(i) { return parseInt(i) }); return { ints: ints, parts: diceMatches, matcher: matchers.dice, asInt: 6, str: "dice", } } var base6Matches = matchers.base6(str); if (base6Matches.length == hexMatches.length && hexMatches.length > 0) { var ints = base6Matches.map(function(i) { return parseInt(i) }); return { ints: ints, parts: base6Matches, matcher: matchers.base6, asInt: 6, str: "base 6", } } var base10Matches = matchers.base10(str); if (base10Matches.length == hexMatches.length && hexMatches.length > 0) { var ints = base10Matches.map(function(i) { return parseInt(i) }); return { ints: ints, parts: base10Matches, matcher: matchers.base10, asInt: 10, str: "base 10", } } var ints = hexMatches.map(function(i) { return parseInt(i, 16) }); return { ints: ints, parts: hexMatches, matcher: matchers.hex, asInt: 16, str: "hexadecimal", } } // Assume cards are NOT replaced. // Additional entropy decreases as more cards are used. This means // total possible entropy is measured using n!, not base^n. // eg the second last card can be only one of two, not one of fifty two // so the added entropy for that card is only one bit at most function processCardEntropy(cards) { // Track how many instances of each card have been used, and thus // how many decks are in use. var cardCounts = {}; var numberOfDecks = 0; // Work out number of decks by max(duplicates) for (var i=0; i numberOfDecks) { numberOfDecks = cardCounts[card]; } } // Work out the total number of bits for this many decks // See http://crypto.stackexchange.com/q/41886 var gainedBits = 0; // Equivalent of Math.log2(factorial(52*numberOfDecks)) // which becomes infinity for numberOfDecks > 4 for (var i=1; i<=52*numberOfDecks; i++) { gainedBits = gainedBits + Math.log2(i); } var lostBits = 52 * Math.log2(factorial(numberOfDecks)); var maxBits = gainedBits - lostBits; // Convert the drawn cards to a binary representation. // The exact technique for doing this is unclear. // See // http://crypto.stackexchange.com/a/41896 // "I even doubt that this is well defined (only the average entropy // is, I believe)." // See // https://github.com/iancoleman/bip39/issues/33#issuecomment-263021856 // "The binary representation can be the first log(permutations,2) bits // of the sha-2 hash of the normalized deck string." // // In this specific implementation, the first N bits of the hash of the // normalized cards string is being used. Uppercase, no spaces; eg // sha256("AH8DQSTC2H") var totalCards = numberOfDecks * 52; var percentUsed = cards.length / totalCards; // Calculate the average number of bits of entropy for the number of // cards drawn. var numberOfBits = Math.floor(maxBits * percentUsed); // Create a normalized string of the selected cards var normalizedCards = cards.join("").toUpperCase(); // Convert to binary using the SHA256 hash of the normalized cards. // If the number of bits is more than 256, multiple hashes // are used until the required number of bits is reached. var entropyBin = ""; var iterations = 0; while (entropyBin.length < numberOfBits) { var hashedCards = sjcl.hash.sha256.hash(normalizedCards + ":" + iterations); var hashHex = sjcl.codec.hex.fromBits(hashedCards); for (var i=0; i