/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package transport import ( "bytes" "io" "math" "net" "strings" "sync" "sync/atomic" "time" "golang.org/x/net/context" "golang.org/x/net/http2" "golang.org/x/net/http2/hpack" "google.golang.org/grpc/codes" "google.golang.org/grpc/credentials" "google.golang.org/grpc/keepalive" "google.golang.org/grpc/metadata" "google.golang.org/grpc/peer" "google.golang.org/grpc/stats" "google.golang.org/grpc/status" ) // http2Client implements the ClientTransport interface with HTTP2. type http2Client struct { ctx context.Context target string // server name/addr userAgent string md interface{} conn net.Conn // underlying communication channel remoteAddr net.Addr localAddr net.Addr authInfo credentials.AuthInfo // auth info about the connection nextID uint32 // the next stream ID to be used // writableChan synchronizes write access to the transport. // A writer acquires the write lock by sending a value on writableChan // and releases it by receiving from writableChan. writableChan chan int // shutdownChan is closed when Close is called. // Blocking operations should select on shutdownChan to avoid // blocking forever after Close. // TODO(zhaoq): Maybe have a channel context? shutdownChan chan struct{} // errorChan is closed to notify the I/O error to the caller. errorChan chan struct{} // goAway is closed to notify the upper layer (i.e., addrConn.transportMonitor) // that the server sent GoAway on this transport. goAway chan struct{} // awakenKeepalive is used to wake up keepalive when after it has gone dormant. awakenKeepalive chan struct{} framer *framer hBuf *bytes.Buffer // the buffer for HPACK encoding hEnc *hpack.Encoder // HPACK encoder // controlBuf delivers all the control related tasks (e.g., window // updates, reset streams, and various settings) to the controller. controlBuf *controlBuffer fc *inFlow // sendQuotaPool provides flow control to outbound message. sendQuotaPool *quotaPool // streamsQuota limits the max number of concurrent streams. streamsQuota *quotaPool // The scheme used: https if TLS is on, http otherwise. scheme string isSecure bool creds []credentials.PerRPCCredentials // Boolean to keep track of reading activity on transport. // 1 is true and 0 is false. activity uint32 // Accessed atomically. kp keepalive.ClientParameters statsHandler stats.Handler initialWindowSize int32 bdpEst *bdpEstimator outQuotaVersion uint32 mu sync.Mutex // guard the following variables state transportState // the state of underlying connection activeStreams map[uint32]*Stream // The max number of concurrent streams maxStreams int // the per-stream outbound flow control window size set by the peer. streamSendQuota uint32 // prevGoAway ID records the Last-Stream-ID in the previous GOAway frame. prevGoAwayID uint32 // goAwayReason records the http2.ErrCode and debug data received with the // GoAway frame. goAwayReason GoAwayReason } func dial(ctx context.Context, fn func(context.Context, string) (net.Conn, error), addr string) (net.Conn, error) { if fn != nil { return fn(ctx, addr) } return dialContext(ctx, "tcp", addr) } func isTemporary(err error) bool { switch err { case io.EOF: // Connection closures may be resolved upon retry, and are thus // treated as temporary. return true case context.DeadlineExceeded: // In Go 1.7, context.DeadlineExceeded implements Timeout(), and this // special case is not needed. Until then, we need to keep this // clause. return true } switch err := err.(type) { case interface { Temporary() bool }: return err.Temporary() case interface { Timeout() bool }: // Timeouts may be resolved upon retry, and are thus treated as // temporary. return err.Timeout() } return false } // newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2 // and starts to receive messages on it. Non-nil error returns if construction // fails. func newHTTP2Client(ctx context.Context, addr TargetInfo, opts ConnectOptions) (_ ClientTransport, err error) { scheme := "http" conn, err := dial(ctx, opts.Dialer, addr.Addr) if err != nil { if opts.FailOnNonTempDialError { return nil, connectionErrorf(isTemporary(err), err, "transport: error while dialing: %v", err) } return nil, connectionErrorf(true, err, "transport: Error while dialing %v", err) } // Any further errors will close the underlying connection defer func(conn net.Conn) { if err != nil { conn.Close() } }(conn) var ( isSecure bool authInfo credentials.AuthInfo ) if creds := opts.TransportCredentials; creds != nil { scheme = "https" conn, authInfo, err = creds.ClientHandshake(ctx, addr.Addr, conn) if err != nil { // Credentials handshake errors are typically considered permanent // to avoid retrying on e.g. bad certificates. temp := isTemporary(err) return nil, connectionErrorf(temp, err, "transport: authentication handshake failed: %v", err) } isSecure = true } kp := opts.KeepaliveParams // Validate keepalive parameters. if kp.Time == 0 { kp.Time = defaultClientKeepaliveTime } if kp.Timeout == 0 { kp.Timeout = defaultClientKeepaliveTimeout } dynamicWindow := true icwz := int32(initialWindowSize) if opts.InitialConnWindowSize >= defaultWindowSize { icwz = opts.InitialConnWindowSize dynamicWindow = false } var buf bytes.Buffer t := &http2Client{ ctx: ctx, target: addr.Addr, userAgent: opts.UserAgent, md: addr.Metadata, conn: conn, remoteAddr: conn.RemoteAddr(), localAddr: conn.LocalAddr(), authInfo: authInfo, // The client initiated stream id is odd starting from 1. nextID: 1, writableChan: make(chan int, 1), shutdownChan: make(chan struct{}), errorChan: make(chan struct{}), goAway: make(chan struct{}), awakenKeepalive: make(chan struct{}, 1), framer: newFramer(conn), hBuf: &buf, hEnc: hpack.NewEncoder(&buf), controlBuf: newControlBuffer(), fc: &inFlow{limit: uint32(icwz)}, sendQuotaPool: newQuotaPool(defaultWindowSize), scheme: scheme, state: reachable, activeStreams: make(map[uint32]*Stream), isSecure: isSecure, creds: opts.PerRPCCredentials, maxStreams: defaultMaxStreamsClient, streamsQuota: newQuotaPool(defaultMaxStreamsClient), streamSendQuota: defaultWindowSize, kp: kp, statsHandler: opts.StatsHandler, initialWindowSize: initialWindowSize, } if opts.InitialWindowSize >= defaultWindowSize { t.initialWindowSize = opts.InitialWindowSize dynamicWindow = false } if dynamicWindow { t.bdpEst = &bdpEstimator{ bdp: initialWindowSize, updateFlowControl: t.updateFlowControl, } } // Make sure awakenKeepalive can't be written upon. // keepalive routine will make it writable, if need be. t.awakenKeepalive <- struct{}{} if t.statsHandler != nil { t.ctx = t.statsHandler.TagConn(t.ctx, &stats.ConnTagInfo{ RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, }) connBegin := &stats.ConnBegin{ Client: true, } t.statsHandler.HandleConn(t.ctx, connBegin) } // Start the reader goroutine for incoming message. Each transport has // a dedicated goroutine which reads HTTP2 frame from network. Then it // dispatches the frame to the corresponding stream entity. go t.reader() // Send connection preface to server. n, err := t.conn.Write(clientPreface) if err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write client preface: %v", err) } if n != len(clientPreface) { t.Close() return nil, connectionErrorf(true, err, "transport: preface mismatch, wrote %d bytes; want %d", n, len(clientPreface)) } if t.initialWindowSize != defaultWindowSize { err = t.framer.writeSettings(true, http2.Setting{ ID: http2.SettingInitialWindowSize, Val: uint32(t.initialWindowSize), }) } else { err = t.framer.writeSettings(true) } if err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write initial settings frame: %v", err) } // Adjust the connection flow control window if needed. if delta := uint32(icwz - defaultWindowSize); delta > 0 { if err := t.framer.writeWindowUpdate(true, 0, delta); err != nil { t.Close() return nil, connectionErrorf(true, err, "transport: failed to write window update: %v", err) } } go t.controller() if t.kp.Time != infinity { go t.keepalive() } t.writableChan <- 0 return t, nil } func (t *http2Client) newStream(ctx context.Context, callHdr *CallHdr) *Stream { // TODO(zhaoq): Handle uint32 overflow of Stream.id. s := &Stream{ id: t.nextID, done: make(chan struct{}), goAway: make(chan struct{}), method: callHdr.Method, sendCompress: callHdr.SendCompress, buf: newRecvBuffer(), fc: &inFlow{limit: uint32(t.initialWindowSize)}, sendQuotaPool: newQuotaPool(int(t.streamSendQuota)), headerChan: make(chan struct{}), } t.nextID += 2 s.requestRead = func(n int) { t.adjustWindow(s, uint32(n)) } // The client side stream context should have exactly the same life cycle with the user provided context. // That means, s.ctx should be read-only. And s.ctx is done iff ctx is done. // So we use the original context here instead of creating a copy. s.ctx = ctx s.trReader = &transportReader{ reader: &recvBufferReader{ ctx: s.ctx, goAway: s.goAway, recv: s.buf, }, windowHandler: func(n int) { t.updateWindow(s, uint32(n)) }, } return s } // NewStream creates a stream and registers it into the transport as "active" // streams. func (t *http2Client) NewStream(ctx context.Context, callHdr *CallHdr) (_ *Stream, err error) { pr := &peer.Peer{ Addr: t.remoteAddr, } // Attach Auth info if there is any. if t.authInfo != nil { pr.AuthInfo = t.authInfo } ctx = peer.NewContext(ctx, pr) var ( authData = make(map[string]string) audience string ) // Create an audience string only if needed. if len(t.creds) > 0 || callHdr.Creds != nil { // Construct URI required to get auth request metadata. var port string if pos := strings.LastIndex(t.target, ":"); pos != -1 { // Omit port if it is the default one. if t.target[pos+1:] != "443" { port = ":" + t.target[pos+1:] } } pos := strings.LastIndex(callHdr.Method, "/") if pos == -1 { pos = len(callHdr.Method) } audience = "https://" + callHdr.Host + port + callHdr.Method[:pos] } for _, c := range t.creds { data, err := c.GetRequestMetadata(ctx, audience) if err != nil { return nil, streamErrorf(codes.Internal, "transport: %v", err) } for k, v := range data { // Capital header names are illegal in HTTP/2. k = strings.ToLower(k) authData[k] = v } } callAuthData := make(map[string]string) // Check if credentials.PerRPCCredentials were provided via call options. // Note: if these credentials are provided both via dial options and call // options, then both sets of credentials will be applied. if callCreds := callHdr.Creds; callCreds != nil { if !t.isSecure && callCreds.RequireTransportSecurity() { return nil, streamErrorf(codes.Unauthenticated, "transport: cannot send secure credentials on an insecure conneciton") } data, err := callCreds.GetRequestMetadata(ctx, audience) if err != nil { return nil, streamErrorf(codes.Internal, "transport: %v", err) } for k, v := range data { // Capital header names are illegal in HTTP/2 k = strings.ToLower(k) callAuthData[k] = v } } t.mu.Lock() if t.activeStreams == nil { t.mu.Unlock() return nil, ErrConnClosing } if t.state == draining { t.mu.Unlock() return nil, ErrStreamDrain } if t.state != reachable { t.mu.Unlock() return nil, ErrConnClosing } t.mu.Unlock() sq, err := wait(ctx, nil, nil, t.shutdownChan, t.streamsQuota.acquire()) if err != nil { return nil, err } // Returns the quota balance back. if sq > 1 { t.streamsQuota.add(sq - 1) } if _, err := wait(ctx, nil, nil, t.shutdownChan, t.writableChan); err != nil { // Return the quota back now because there is no stream returned to the caller. if _, ok := err.(StreamError); ok { t.streamsQuota.add(1) } return nil, err } t.mu.Lock() if t.state == draining { t.mu.Unlock() t.streamsQuota.add(1) // Need to make t writable again so that the rpc in flight can still proceed. t.writableChan <- 0 return nil, ErrStreamDrain } if t.state != reachable { t.mu.Unlock() return nil, ErrConnClosing } s := t.newStream(ctx, callHdr) t.activeStreams[s.id] = s // If the number of active streams change from 0 to 1, then check if keepalive // has gone dormant. If so, wake it up. if len(t.activeStreams) == 1 { select { case t.awakenKeepalive <- struct{}{}: t.framer.writePing(false, false, [8]byte{}) default: } } t.mu.Unlock() // HPACK encodes various headers. Note that once WriteField(...) is // called, the corresponding headers/continuation frame has to be sent // because hpack.Encoder is stateful. t.hBuf.Reset() t.hEnc.WriteField(hpack.HeaderField{Name: ":method", Value: "POST"}) t.hEnc.WriteField(hpack.HeaderField{Name: ":scheme", Value: t.scheme}) t.hEnc.WriteField(hpack.HeaderField{Name: ":path", Value: callHdr.Method}) t.hEnc.WriteField(hpack.HeaderField{Name: ":authority", Value: callHdr.Host}) t.hEnc.WriteField(hpack.HeaderField{Name: "content-type", Value: "application/grpc"}) t.hEnc.WriteField(hpack.HeaderField{Name: "user-agent", Value: t.userAgent}) t.hEnc.WriteField(hpack.HeaderField{Name: "te", Value: "trailers"}) if callHdr.SendCompress != "" { t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-encoding", Value: callHdr.SendCompress}) } if dl, ok := ctx.Deadline(); ok { // Send out timeout regardless its value. The server can detect timeout context by itself. timeout := dl.Sub(time.Now()) t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-timeout", Value: encodeTimeout(timeout)}) } for k, v := range authData { t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } for k, v := range callAuthData { t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } var ( endHeaders bool ) if md, ok := metadata.FromOutgoingContext(ctx); ok { for k, vv := range md { // HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set. if isReservedHeader(k) { continue } for _, v := range vv { t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } } if md, ok := t.md.(*metadata.MD); ok { for k, vv := range *md { if isReservedHeader(k) { continue } for _, v := range vv { t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } } first := true bufLen := t.hBuf.Len() // Sends the headers in a single batch even when they span multiple frames. for !endHeaders { size := t.hBuf.Len() if size > http2MaxFrameLen { size = http2MaxFrameLen } else { endHeaders = true } var flush bool if callHdr.Flush && endHeaders { flush = true } if first { // Sends a HeadersFrame to server to start a new stream. p := http2.HeadersFrameParam{ StreamID: s.id, BlockFragment: t.hBuf.Next(size), EndStream: false, EndHeaders: endHeaders, } // Do a force flush for the buffered frames iff it is the last headers frame // and there is header metadata to be sent. Otherwise, there is flushing until // the corresponding data frame is written. err = t.framer.writeHeaders(flush, p) first = false } else { // Sends Continuation frames for the leftover headers. err = t.framer.writeContinuation(flush, s.id, endHeaders, t.hBuf.Next(size)) } if err != nil { t.notifyError(err) return nil, connectionErrorf(true, err, "transport: %v", err) } } s.mu.Lock() s.bytesSent = true s.mu.Unlock() if t.statsHandler != nil { outHeader := &stats.OutHeader{ Client: true, WireLength: bufLen, FullMethod: callHdr.Method, RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, Compression: callHdr.SendCompress, } t.statsHandler.HandleRPC(s.ctx, outHeader) } t.writableChan <- 0 return s, nil } // CloseStream clears the footprint of a stream when the stream is not needed any more. // This must not be executed in reader's goroutine. func (t *http2Client) CloseStream(s *Stream, err error) { t.mu.Lock() if t.activeStreams == nil { t.mu.Unlock() return } if err != nil { // notify in-flight streams, before the deletion s.write(recvMsg{err: err}) } delete(t.activeStreams, s.id) if t.state == draining && len(t.activeStreams) == 0 { // The transport is draining and s is the last live stream on t. t.mu.Unlock() t.Close() return } t.mu.Unlock() // rstStream is true in case the stream is being closed at the client-side // and the server needs to be intimated about it by sending a RST_STREAM // frame. // To make sure this frame is written to the wire before the headers of the // next stream waiting for streamsQuota, we add to streamsQuota pool only // after having acquired the writableChan to send RST_STREAM out (look at // the controller() routine). var rstStream bool var rstError http2.ErrCode defer func() { // In case, the client doesn't have to send RST_STREAM to server // we can safely add back to streamsQuota pool now. if !rstStream { t.streamsQuota.add(1) return } t.controlBuf.put(&resetStream{s.id, rstError}) }() s.mu.Lock() rstStream = s.rstStream rstError = s.rstError if s.state == streamDone { s.mu.Unlock() return } if !s.headerDone { close(s.headerChan) s.headerDone = true } s.state = streamDone s.mu.Unlock() if _, ok := err.(StreamError); ok { rstStream = true rstError = http2.ErrCodeCancel } } // Close kicks off the shutdown process of the transport. This should be called // only once on a transport. Once it is called, the transport should not be // accessed any more. func (t *http2Client) Close() (err error) { t.mu.Lock() if t.state == closing { t.mu.Unlock() return } if t.state == reachable || t.state == draining { close(t.errorChan) } t.state = closing t.mu.Unlock() close(t.shutdownChan) err = t.conn.Close() t.mu.Lock() streams := t.activeStreams t.activeStreams = nil t.mu.Unlock() // Notify all active streams. for _, s := range streams { s.mu.Lock() if !s.headerDone { close(s.headerChan) s.headerDone = true } s.mu.Unlock() s.write(recvMsg{err: ErrConnClosing}) } if t.statsHandler != nil { connEnd := &stats.ConnEnd{ Client: true, } t.statsHandler.HandleConn(t.ctx, connEnd) } return } func (t *http2Client) GracefulClose() error { t.mu.Lock() switch t.state { case unreachable: // The server may close the connection concurrently. t is not available for // any streams. Close it now. t.mu.Unlock() t.Close() return nil case closing: t.mu.Unlock() return nil } if t.state == draining { t.mu.Unlock() return nil } t.state = draining active := len(t.activeStreams) t.mu.Unlock() if active == 0 { return t.Close() } return nil } // Write formats the data into HTTP2 data frame(s) and sends it out. The caller // should proceed only if Write returns nil. // TODO(zhaoq): opts.Delay is ignored in this implementation. Support it later // if it improves the performance. func (t *http2Client) Write(s *Stream, data []byte, opts *Options) error { r := bytes.NewBuffer(data) var ( p []byte oqv uint32 ) for { oqv = atomic.LoadUint32(&t.outQuotaVersion) if r.Len() > 0 || p != nil { size := http2MaxFrameLen // Wait until the stream has some quota to send the data. sq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, s.sendQuotaPool.acquire()) if err != nil { return err } // Wait until the transport has some quota to send the data. tq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.sendQuotaPool.acquire()) if err != nil { return err } if sq < size { size = sq } if tq < size { size = tq } if p == nil { p = r.Next(size) } ps := len(p) if ps < sq { // Overbooked stream quota. Return it back. s.sendQuotaPool.add(sq - ps) } if ps < tq { // Overbooked transport quota. Return it back. t.sendQuotaPool.add(tq - ps) } } var ( endStream bool forceFlush bool ) if opts.Last && r.Len() == 0 { endStream = true } // Indicate there is a writer who is about to write a data frame. t.framer.adjustNumWriters(1) // Got some quota. Try to acquire writing privilege on the transport. if _, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.writableChan); err != nil { if _, ok := err.(StreamError); ok || err == io.EOF { // Return the connection quota back. t.sendQuotaPool.add(len(p)) } if t.framer.adjustNumWriters(-1) == 0 { // This writer is the last one in this batch and has the // responsibility to flush the buffered frames. It queues // a flush request to controlBuf instead of flushing directly // in order to avoid the race with other writing or flushing. t.controlBuf.put(&flushIO{}) } return err } select { case <-s.ctx.Done(): t.sendQuotaPool.add(len(p)) if t.framer.adjustNumWriters(-1) == 0 { t.controlBuf.put(&flushIO{}) } t.writableChan <- 0 return ContextErr(s.ctx.Err()) default: } if oqv != atomic.LoadUint32(&t.outQuotaVersion) { // InitialWindowSize settings frame must have been received after we // acquired send quota but before we got the writable channel. // We must forsake this write. t.sendQuotaPool.add(len(p)) s.sendQuotaPool.add(len(p)) if t.framer.adjustNumWriters(-1) == 0 { t.controlBuf.put(&flushIO{}) } t.writableChan <- 0 continue } if r.Len() == 0 && t.framer.adjustNumWriters(0) == 1 { // Do a force flush iff this is last frame for the entire gRPC message // and the caller is the only writer at this moment. forceFlush = true } // If WriteData fails, all the pending streams will be handled // by http2Client.Close(). No explicit CloseStream() needs to be // invoked. if err := t.framer.writeData(forceFlush, s.id, endStream, p); err != nil { t.notifyError(err) return connectionErrorf(true, err, "transport: %v", err) } p = nil if t.framer.adjustNumWriters(-1) == 0 { t.framer.flushWrite() } t.writableChan <- 0 if r.Len() == 0 { break } } if !opts.Last { return nil } s.mu.Lock() if s.state != streamDone { s.state = streamWriteDone } s.mu.Unlock() return nil } func (t *http2Client) getStream(f http2.Frame) (*Stream, bool) { t.mu.Lock() defer t.mu.Unlock() s, ok := t.activeStreams[f.Header().StreamID] return s, ok } // adjustWindow sends out extra window update over the initial window size // of stream if the application is requesting data larger in size than // the window. func (t *http2Client) adjustWindow(s *Stream, n uint32) { s.mu.Lock() defer s.mu.Unlock() if s.state == streamDone { return } if w := s.fc.maybeAdjust(n); w > 0 { // Piggyback conneciton's window update along. if cw := t.fc.resetPendingUpdate(); cw > 0 { t.controlBuf.put(&windowUpdate{0, cw, false}) } t.controlBuf.put(&windowUpdate{s.id, w, true}) } } // updateWindow adjusts the inbound quota for the stream and the transport. // Window updates will deliver to the controller for sending when // the cumulative quota exceeds the corresponding threshold. func (t *http2Client) updateWindow(s *Stream, n uint32) { s.mu.Lock() defer s.mu.Unlock() if s.state == streamDone { return } if w := s.fc.onRead(n); w > 0 { if cw := t.fc.resetPendingUpdate(); cw > 0 { t.controlBuf.put(&windowUpdate{0, cw, false}) } t.controlBuf.put(&windowUpdate{s.id, w, true}) } } // updateFlowControl updates the incoming flow control windows // for the transport and the stream based on the current bdp // estimation. func (t *http2Client) updateFlowControl(n uint32) { t.mu.Lock() for _, s := range t.activeStreams { s.fc.newLimit(n) } t.initialWindowSize = int32(n) t.mu.Unlock() t.controlBuf.put(&windowUpdate{0, t.fc.newLimit(n), false}) t.controlBuf.put(&settings{ ack: false, ss: []http2.Setting{ { ID: http2.SettingInitialWindowSize, Val: uint32(n), }, }, }) } func (t *http2Client) handleData(f *http2.DataFrame) { size := f.Header().Length var sendBDPPing bool if t.bdpEst != nil { sendBDPPing = t.bdpEst.add(uint32(size)) } // Decouple connection's flow control from application's read. // An update on connection's flow control should not depend on // whether user application has read the data or not. Such a // restriction is already imposed on the stream's flow control, // and therefore the sender will be blocked anyways. // Decoupling the connection flow control will prevent other // active(fast) streams from starving in presence of slow or // inactive streams. // // Furthermore, if a bdpPing is being sent out we can piggyback // connection's window update for the bytes we just received. if sendBDPPing { t.controlBuf.put(&windowUpdate{0, uint32(size), false}) t.controlBuf.put(bdpPing) } else { if err := t.fc.onData(uint32(size)); err != nil { t.notifyError(connectionErrorf(true, err, "%v", err)) return } if w := t.fc.onRead(uint32(size)); w > 0 { t.controlBuf.put(&windowUpdate{0, w, true}) } } // Select the right stream to dispatch. s, ok := t.getStream(f) if !ok { return } if size > 0 { s.mu.Lock() if s.state == streamDone { s.mu.Unlock() return } if err := s.fc.onData(uint32(size)); err != nil { s.rstStream = true s.rstError = http2.ErrCodeFlowControl s.finish(status.New(codes.Internal, err.Error())) s.mu.Unlock() s.write(recvMsg{err: io.EOF}) return } if f.Header().Flags.Has(http2.FlagDataPadded) { if w := s.fc.onRead(uint32(size) - uint32(len(f.Data()))); w > 0 { t.controlBuf.put(&windowUpdate{s.id, w, true}) } } s.mu.Unlock() // TODO(bradfitz, zhaoq): A copy is required here because there is no // guarantee f.Data() is consumed before the arrival of next frame. // Can this copy be eliminated? if len(f.Data()) > 0 { data := make([]byte, len(f.Data())) copy(data, f.Data()) s.write(recvMsg{data: data}) } } // The server has closed the stream without sending trailers. Record that // the read direction is closed, and set the status appropriately. if f.FrameHeader.Flags.Has(http2.FlagDataEndStream) { s.mu.Lock() if s.state == streamDone { s.mu.Unlock() return } s.finish(status.New(codes.Internal, "server closed the stream without sending trailers")) s.mu.Unlock() s.write(recvMsg{err: io.EOF}) } } func (t *http2Client) handleRSTStream(f *http2.RSTStreamFrame) { s, ok := t.getStream(f) if !ok { return } s.mu.Lock() if s.state == streamDone { s.mu.Unlock() return } if !s.headerDone { close(s.headerChan) s.headerDone = true } statusCode, ok := http2ErrConvTab[http2.ErrCode(f.ErrCode)] if !ok { warningf("transport: http2Client.handleRSTStream found no mapped gRPC status for the received http2 error %v", f.ErrCode) statusCode = codes.Unknown } s.finish(status.Newf(statusCode, "stream terminated by RST_STREAM with error code: %d", f.ErrCode)) s.mu.Unlock() s.write(recvMsg{err: io.EOF}) } func (t *http2Client) handleSettings(f *http2.SettingsFrame) { if f.IsAck() { return } var ss []http2.Setting f.ForeachSetting(func(s http2.Setting) error { ss = append(ss, s) return nil }) // The settings will be applied once the ack is sent. t.controlBuf.put(&settings{ack: true, ss: ss}) } func (t *http2Client) handlePing(f *http2.PingFrame) { if f.IsAck() { // Maybe it's a BDP ping. if t.bdpEst != nil { t.bdpEst.calculate(f.Data) } return } pingAck := &ping{ack: true} copy(pingAck.data[:], f.Data[:]) t.controlBuf.put(pingAck) } func (t *http2Client) handleGoAway(f *http2.GoAwayFrame) { t.mu.Lock() if t.state != reachable && t.state != draining { t.mu.Unlock() return } if f.ErrCode == http2.ErrCodeEnhanceYourCalm { infof("Client received GoAway with http2.ErrCodeEnhanceYourCalm.") } id := f.LastStreamID if id > 0 && id%2 != 1 { t.mu.Unlock() t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: stream ID %d is even", f.LastStreamID)) return } // A client can recieve multiple GoAways from server (look at https://github.com/grpc/grpc-go/issues/1387). // The idea is that the first GoAway will be sent with an ID of MaxInt32 and the second GoAway will be sent after an RTT delay // with the ID of the last stream the server will process. // Therefore, when we get the first GoAway we don't really close any streams. While in case of second GoAway we // close all streams created after the second GoAwayId. This way streams that were in-flight while the GoAway from server // was being sent don't get killed. select { case <-t.goAway: // t.goAway has been closed (i.e.,multiple GoAways). // If there are multiple GoAways the first one should always have an ID greater than the following ones. if id > t.prevGoAwayID { t.mu.Unlock() t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: previously recv GOAWAY frame with LastStramID %d, currently recv %d", id, f.LastStreamID)) return } default: t.setGoAwayReason(f) close(t.goAway) t.state = draining } // All streams with IDs greater than the GoAwayId // and smaller than the previous GoAway ID should be killed. upperLimit := t.prevGoAwayID if upperLimit == 0 { // This is the first GoAway Frame. upperLimit = math.MaxUint32 // Kill all streams after the GoAway ID. } for streamID, stream := range t.activeStreams { if streamID > id && streamID <= upperLimit { close(stream.goAway) } } t.prevGoAwayID = id active := len(t.activeStreams) t.mu.Unlock() if active == 0 { t.Close() } } // setGoAwayReason sets the value of t.goAwayReason based // on the GoAway frame received. // It expects a lock on transport's mutext to be held by // the caller. func (t *http2Client) setGoAwayReason(f *http2.GoAwayFrame) { t.goAwayReason = NoReason switch f.ErrCode { case http2.ErrCodeEnhanceYourCalm: if string(f.DebugData()) == "too_many_pings" { t.goAwayReason = TooManyPings } } } func (t *http2Client) GetGoAwayReason() GoAwayReason { t.mu.Lock() defer t.mu.Unlock() return t.goAwayReason } func (t *http2Client) handleWindowUpdate(f *http2.WindowUpdateFrame) { id := f.Header().StreamID incr := f.Increment if id == 0 { t.sendQuotaPool.add(int(incr)) return } if s, ok := t.getStream(f); ok { s.sendQuotaPool.add(int(incr)) } } // operateHeaders takes action on the decoded headers. func (t *http2Client) operateHeaders(frame *http2.MetaHeadersFrame) { s, ok := t.getStream(frame) if !ok { return } s.mu.Lock() s.bytesReceived = true s.mu.Unlock() var state decodeState if err := state.decodeResponseHeader(frame); err != nil { s.mu.Lock() if !s.headerDone { close(s.headerChan) s.headerDone = true } s.mu.Unlock() s.write(recvMsg{err: err}) // Something wrong. Stops reading even when there is remaining. return } endStream := frame.StreamEnded() var isHeader bool defer func() { if t.statsHandler != nil { if isHeader { inHeader := &stats.InHeader{ Client: true, WireLength: int(frame.Header().Length), } t.statsHandler.HandleRPC(s.ctx, inHeader) } else { inTrailer := &stats.InTrailer{ Client: true, WireLength: int(frame.Header().Length), } t.statsHandler.HandleRPC(s.ctx, inTrailer) } } }() s.mu.Lock() if !endStream { s.recvCompress = state.encoding } if !s.headerDone { if !endStream && len(state.mdata) > 0 { s.header = state.mdata } close(s.headerChan) s.headerDone = true isHeader = true } if !endStream || s.state == streamDone { s.mu.Unlock() return } if len(state.mdata) > 0 { s.trailer = state.mdata } s.finish(state.status()) s.mu.Unlock() s.write(recvMsg{err: io.EOF}) } func handleMalformedHTTP2(s *Stream, err error) { s.mu.Lock() if !s.headerDone { close(s.headerChan) s.headerDone = true } s.mu.Unlock() s.write(recvMsg{err: err}) } // reader runs as a separate goroutine in charge of reading data from network // connection. // // TODO(zhaoq): currently one reader per transport. Investigate whether this is // optimal. // TODO(zhaoq): Check the validity of the incoming frame sequence. func (t *http2Client) reader() { // Check the validity of server preface. frame, err := t.framer.readFrame() if err != nil { t.notifyError(err) return } atomic.CompareAndSwapUint32(&t.activity, 0, 1) sf, ok := frame.(*http2.SettingsFrame) if !ok { t.notifyError(err) return } t.handleSettings(sf) // loop to keep reading incoming messages on this transport. for { frame, err := t.framer.readFrame() atomic.CompareAndSwapUint32(&t.activity, 0, 1) if err != nil { // Abort an active stream if the http2.Framer returns a // http2.StreamError. This can happen only if the server's response // is malformed http2. if se, ok := err.(http2.StreamError); ok { t.mu.Lock() s := t.activeStreams[se.StreamID] t.mu.Unlock() if s != nil { // use error detail to provide better err message handleMalformedHTTP2(s, streamErrorf(http2ErrConvTab[se.Code], "%v", t.framer.errorDetail())) } continue } else { // Transport error. t.notifyError(err) return } } switch frame := frame.(type) { case *http2.MetaHeadersFrame: t.operateHeaders(frame) case *http2.DataFrame: t.handleData(frame) case *http2.RSTStreamFrame: t.handleRSTStream(frame) case *http2.SettingsFrame: t.handleSettings(frame) case *http2.PingFrame: t.handlePing(frame) case *http2.GoAwayFrame: t.handleGoAway(frame) case *http2.WindowUpdateFrame: t.handleWindowUpdate(frame) default: errorf("transport: http2Client.reader got unhandled frame type %v.", frame) } } } func (t *http2Client) applySettings(ss []http2.Setting) { for _, s := range ss { switch s.ID { case http2.SettingMaxConcurrentStreams: // TODO(zhaoq): This is a hack to avoid significant refactoring of the // code to deal with the unrealistic int32 overflow. Probably will try // to find a better way to handle this later. if s.Val > math.MaxInt32 { s.Val = math.MaxInt32 } t.mu.Lock() ms := t.maxStreams t.maxStreams = int(s.Val) t.mu.Unlock() t.streamsQuota.add(int(s.Val) - ms) case http2.SettingInitialWindowSize: t.mu.Lock() for _, stream := range t.activeStreams { // Adjust the sending quota for each stream. stream.sendQuotaPool.add(int(s.Val) - int(t.streamSendQuota)) } t.streamSendQuota = s.Val t.mu.Unlock() atomic.AddUint32(&t.outQuotaVersion, 1) } } } // controller running in a separate goroutine takes charge of sending control // frames (e.g., window update, reset stream, setting, etc.) to the server. func (t *http2Client) controller() { for { select { case i := <-t.controlBuf.get(): t.controlBuf.load() select { case <-t.writableChan: switch i := i.(type) { case *windowUpdate: t.framer.writeWindowUpdate(i.flush, i.streamID, i.increment) case *settings: if i.ack { t.framer.writeSettingsAck(true) t.applySettings(i.ss) } else { t.framer.writeSettings(true, i.ss...) } case *resetStream: // If the server needs to be to intimated about stream closing, // then we need to make sure the RST_STREAM frame is written to // the wire before the headers of the next stream waiting on // streamQuota. We ensure this by adding to the streamsQuota pool // only after having acquired the writableChan to send RST_STREAM. t.streamsQuota.add(1) t.framer.writeRSTStream(true, i.streamID, i.code) case *flushIO: t.framer.flushWrite() case *ping: if !i.ack { t.bdpEst.timesnap(i.data) } t.framer.writePing(true, i.ack, i.data) default: errorf("transport: http2Client.controller got unexpected item type %v\n", i) } t.writableChan <- 0 continue case <-t.shutdownChan: return } case <-t.shutdownChan: return } } } // keepalive running in a separate goroutune makes sure the connection is alive by sending pings. func (t *http2Client) keepalive() { p := &ping{data: [8]byte{}} timer := time.NewTimer(t.kp.Time) for { select { case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) { timer.Reset(t.kp.Time) continue } // Check if keepalive should go dormant. t.mu.Lock() if len(t.activeStreams) < 1 && !t.kp.PermitWithoutStream { // Make awakenKeepalive writable. <-t.awakenKeepalive t.mu.Unlock() select { case <-t.awakenKeepalive: // If the control gets here a ping has been sent // need to reset the timer with keepalive.Timeout. case <-t.shutdownChan: return } } else { t.mu.Unlock() // Send ping. t.controlBuf.put(p) } // By the time control gets here a ping has been sent one way or the other. timer.Reset(t.kp.Timeout) select { case <-timer.C: if atomic.CompareAndSwapUint32(&t.activity, 1, 0) { timer.Reset(t.kp.Time) continue } t.Close() return case <-t.shutdownChan: if !timer.Stop() { <-timer.C } return } case <-t.shutdownChan: if !timer.Stop() { <-timer.C } return } } } func (t *http2Client) Error() <-chan struct{} { return t.errorChan } func (t *http2Client) GoAway() <-chan struct{} { return t.goAway } func (t *http2Client) notifyError(err error) { t.mu.Lock() // make sure t.errorChan is closed only once. if t.state == draining { t.mu.Unlock() t.Close() return } if t.state == reachable { t.state = unreachable close(t.errorChan) infof("transport: http2Client.notifyError got notified that the client transport was broken %v.", err) } t.mu.Unlock() }