package terraform import ( "fmt" "log" "github.com/hashicorp/terraform/config/module" "github.com/hashicorp/terraform/dag" ) // GraphNodeDestroyerCBD must be implemented by nodes that might be // create-before-destroy destroyers. type GraphNodeDestroyerCBD interface { GraphNodeDestroyer // CreateBeforeDestroy returns true if this node represents a node // that is doing a CBD. CreateBeforeDestroy() bool // ModifyCreateBeforeDestroy is called when the CBD state of a node // is changed dynamically. This can return an error if this isn't // allowed. ModifyCreateBeforeDestroy(bool) error } // CBDEdgeTransformer modifies the edges of CBD nodes that went through // the DestroyEdgeTransformer to have the right dependencies. There are // two real tasks here: // // 1. With CBD, the destroy edge is inverted: the destroy depends on // the creation. // // 2. A_d must depend on resources that depend on A. This is to enable // the destroy to only happen once nodes that depend on A successfully // update to A. Example: adding a web server updates the load balancer // before deleting the old web server. // type CBDEdgeTransformer struct { // Module and State are only needed to look up dependencies in // any way possible. Either can be nil if not availabile. Module *module.Tree State *State } func (t *CBDEdgeTransformer) Transform(g *Graph) error { log.Printf("[TRACE] CBDEdgeTransformer: Beginning CBD transformation...") // Go through and reverse any destroy edges destroyMap := make(map[string][]dag.Vertex) for _, v := range g.Vertices() { dn, ok := v.(GraphNodeDestroyerCBD) if !ok { continue } if !dn.CreateBeforeDestroy() { // If there are no CBD ancestors (dependent nodes), then we // do nothing here. if !t.hasCBDAncestor(g, v) { continue } // If this isn't naturally a CBD node, this means that an ancestor is // and we need to auto-upgrade this node to CBD. We do this because // a CBD node depending on non-CBD will result in cycles. To avoid this, // we always attempt to upgrade it. if err := dn.ModifyCreateBeforeDestroy(true); err != nil { return fmt.Errorf( "%s: must have create before destroy enabled because "+ "a dependent resource has CBD enabled. However, when "+ "attempting to automatically do this, an error occurred: %s", dag.VertexName(v), err) } } // Find the destroy edge. There should only be one. for _, e := range g.EdgesTo(v) { // Not a destroy edge, ignore it de, ok := e.(*DestroyEdge) if !ok { continue } log.Printf("[TRACE] CBDEdgeTransformer: inverting edge: %s => %s", dag.VertexName(de.Source()), dag.VertexName(de.Target())) // Found it! Invert. g.RemoveEdge(de) g.Connect(&DestroyEdge{S: de.Target(), T: de.Source()}) } // If the address has an index, we strip that. Our depMap creation // graph doesn't expand counts so we don't currently get _exact_ // dependencies. One day when we limit dependencies more exactly // this will have to change. We have a test case covering this // (depNonCBDCountBoth) so it'll be caught. addr := dn.DestroyAddr() if addr.Index >= 0 { addr = addr.Copy() // Copy so that we don't modify any pointers addr.Index = -1 } // Add this to the list of nodes that we need to fix up // the edges for (step 2 above in the docs). key := addr.String() destroyMap[key] = append(destroyMap[key], v) } // If we have no CBD nodes, then our work here is done if len(destroyMap) == 0 { return nil } // We have CBD nodes. We now have to move on to the much more difficult // task of connecting dependencies of the creation side of the destroy // to the destruction node. The easiest way to explain this is an example: // // Given a pre-destroy dependence of: A => B // And A has CBD set. // // The resulting graph should be: A => B => A_d // // They key here is that B happens before A is destroyed. This is to // facilitate the primary purpose for CBD: making sure that downstreams // are properly updated to avoid downtime before the resource is destroyed. // // We can't trust that the resource being destroyed or anything that // depends on it is actually in our current graph so we make a new // graph in order to determine those dependencies and add them in. log.Printf("[TRACE] CBDEdgeTransformer: building graph to find dependencies...") depMap, err := t.depMap(destroyMap) if err != nil { return err } // We now have the mapping of resource addresses to the destroy // nodes they need to depend on. We now go through our own vertices to // find any matching these addresses and make the connection. for _, v := range g.Vertices() { // We're looking for creators rn, ok := v.(GraphNodeCreator) if !ok { continue } // Get the address addr := rn.CreateAddr() // If the address has an index, we strip that. Our depMap creation // graph doesn't expand counts so we don't currently get _exact_ // dependencies. One day when we limit dependencies more exactly // this will have to change. We have a test case covering this // (depNonCBDCount) so it'll be caught. if addr.Index >= 0 { addr = addr.Copy() // Copy so that we don't modify any pointers addr.Index = -1 } // If there is nothing this resource should depend on, ignore it key := addr.String() dns, ok := depMap[key] if !ok { continue } // We have nodes! Make the connection for _, dn := range dns { log.Printf("[TRACE] CBDEdgeTransformer: destroy depends on dependence: %s => %s", dag.VertexName(dn), dag.VertexName(v)) g.Connect(dag.BasicEdge(dn, v)) } } return nil } func (t *CBDEdgeTransformer) depMap( destroyMap map[string][]dag.Vertex) (map[string][]dag.Vertex, error) { // Build the graph of our config, this ensures that all resources // are present in the graph. g, err := (&BasicGraphBuilder{ Steps: []GraphTransformer{ &FlatConfigTransformer{Module: t.Module}, &AttachResourceConfigTransformer{Module: t.Module}, &AttachStateTransformer{State: t.State}, &ReferenceTransformer{}, }, Name: "CBDEdgeTransformer", }).Build(nil) if err != nil { return nil, err } // Using this graph, build the list of destroy nodes that each resource // address should depend on. For example, when we find B, we map the // address of B to A_d in the "depMap" variable below. depMap := make(map[string][]dag.Vertex) for _, v := range g.Vertices() { // We're looking for resources. rn, ok := v.(GraphNodeResource) if !ok { continue } // Get the address addr := rn.ResourceAddr() key := addr.String() // Get the destroy nodes that are destroying this resource. // If there aren't any, then we don't need to worry about // any connections. dns, ok := destroyMap[key] if !ok { continue } // Get the nodes that depend on this on. In the example above: // finding B in A => B. for _, v := range g.UpEdges(v).List() { // We're looking for resources. rn, ok := v.(GraphNodeResource) if !ok { continue } // Keep track of the destroy nodes that this address // needs to depend on. key := rn.ResourceAddr().String() depMap[key] = append(depMap[key], dns...) } } return depMap, nil } // hasCBDAncestor returns true if any ancestor (node that depends on this) // has CBD set. func (t *CBDEdgeTransformer) hasCBDAncestor(g *Graph, v dag.Vertex) bool { s, _ := g.Ancestors(v) if s == nil { return true } for _, v := range s.List() { dn, ok := v.(GraphNodeDestroyerCBD) if !ok { continue } if dn.CreateBeforeDestroy() { // some ancestor is CreateBeforeDestroy, so we need to follow suit return true } } return false }