]> git.immae.eu Git - github/fretlink/terraform-provider-statuscake.git/blob - vendor/github.com/hashicorp/terraform/terraform/state.go
vendor: github.com/hashicorp/terraform/...@v0.10.0
[github/fretlink/terraform-provider-statuscake.git] / vendor / github.com / hashicorp / terraform / terraform / state.go
1 package terraform
2
3 import (
4 "bufio"
5 "bytes"
6 "encoding/json"
7 "errors"
8 "fmt"
9 "io"
10 "io/ioutil"
11 "log"
12 "reflect"
13 "sort"
14 "strconv"
15 "strings"
16 "sync"
17
18 "github.com/hashicorp/go-multierror"
19 "github.com/hashicorp/go-version"
20 "github.com/hashicorp/terraform/config"
21 "github.com/mitchellh/copystructure"
22 "github.com/satori/go.uuid"
23 )
24
25 const (
26 // StateVersion is the current version for our state file
27 StateVersion = 3
28 )
29
30 // rootModulePath is the path of the root module
31 var rootModulePath = []string{"root"}
32
33 // normalizeModulePath takes a raw module path and returns a path that
34 // has the rootModulePath prepended to it. If I could go back in time I
35 // would've never had a rootModulePath (empty path would be root). We can
36 // still fix this but thats a big refactor that my branch doesn't make sense
37 // for. Instead, this function normalizes paths.
38 func normalizeModulePath(p []string) []string {
39 k := len(rootModulePath)
40
41 // If we already have a root module prefix, we're done
42 if len(p) >= len(rootModulePath) {
43 if reflect.DeepEqual(p[:k], rootModulePath) {
44 return p
45 }
46 }
47
48 // None? Prefix it
49 result := make([]string, len(rootModulePath)+len(p))
50 copy(result, rootModulePath)
51 copy(result[k:], p)
52 return result
53 }
54
55 // State keeps track of a snapshot state-of-the-world that Terraform
56 // can use to keep track of what real world resources it is actually
57 // managing.
58 type State struct {
59 // Version is the state file protocol version.
60 Version int `json:"version"`
61
62 // TFVersion is the version of Terraform that wrote this state.
63 TFVersion string `json:"terraform_version,omitempty"`
64
65 // Serial is incremented on any operation that modifies
66 // the State file. It is used to detect potentially conflicting
67 // updates.
68 Serial int64 `json:"serial"`
69
70 // Lineage is set when a new, blank state is created and then
71 // never updated. This allows us to determine whether the serials
72 // of two states can be meaningfully compared.
73 // Apart from the guarantee that collisions between two lineages
74 // are very unlikely, this value is opaque and external callers
75 // should only compare lineage strings byte-for-byte for equality.
76 Lineage string `json:"lineage"`
77
78 // Remote is used to track the metadata required to
79 // pull and push state files from a remote storage endpoint.
80 Remote *RemoteState `json:"remote,omitempty"`
81
82 // Backend tracks the configuration for the backend in use with
83 // this state. This is used to track any changes in the backend
84 // configuration.
85 Backend *BackendState `json:"backend,omitempty"`
86
87 // Modules contains all the modules in a breadth-first order
88 Modules []*ModuleState `json:"modules"`
89
90 mu sync.Mutex
91 }
92
93 func (s *State) Lock() { s.mu.Lock() }
94 func (s *State) Unlock() { s.mu.Unlock() }
95
96 // NewState is used to initialize a blank state
97 func NewState() *State {
98 s := &State{}
99 s.init()
100 return s
101 }
102
103 // Children returns the ModuleStates that are direct children of
104 // the given path. If the path is "root", for example, then children
105 // returned might be "root.child", but not "root.child.grandchild".
106 func (s *State) Children(path []string) []*ModuleState {
107 s.Lock()
108 defer s.Unlock()
109 // TODO: test
110
111 return s.children(path)
112 }
113
114 func (s *State) children(path []string) []*ModuleState {
115 result := make([]*ModuleState, 0)
116 for _, m := range s.Modules {
117 if m == nil {
118 continue
119 }
120
121 if len(m.Path) != len(path)+1 {
122 continue
123 }
124 if !reflect.DeepEqual(path, m.Path[:len(path)]) {
125 continue
126 }
127
128 result = append(result, m)
129 }
130
131 return result
132 }
133
134 // AddModule adds the module with the given path to the state.
135 //
136 // This should be the preferred method to add module states since it
137 // allows us to optimize lookups later as well as control sorting.
138 func (s *State) AddModule(path []string) *ModuleState {
139 s.Lock()
140 defer s.Unlock()
141
142 return s.addModule(path)
143 }
144
145 func (s *State) addModule(path []string) *ModuleState {
146 // check if the module exists first
147 m := s.moduleByPath(path)
148 if m != nil {
149 return m
150 }
151
152 m = &ModuleState{Path: path}
153 m.init()
154 s.Modules = append(s.Modules, m)
155 s.sort()
156 return m
157 }
158
159 // ModuleByPath is used to lookup the module state for the given path.
160 // This should be the preferred lookup mechanism as it allows for future
161 // lookup optimizations.
162 func (s *State) ModuleByPath(path []string) *ModuleState {
163 if s == nil {
164 return nil
165 }
166 s.Lock()
167 defer s.Unlock()
168
169 return s.moduleByPath(path)
170 }
171
172 func (s *State) moduleByPath(path []string) *ModuleState {
173 for _, mod := range s.Modules {
174 if mod == nil {
175 continue
176 }
177 if mod.Path == nil {
178 panic("missing module path")
179 }
180 if reflect.DeepEqual(mod.Path, path) {
181 return mod
182 }
183 }
184 return nil
185 }
186
187 // ModuleOrphans returns all the module orphans in this state by
188 // returning their full paths. These paths can be used with ModuleByPath
189 // to return the actual state.
190 func (s *State) ModuleOrphans(path []string, c *config.Config) [][]string {
191 s.Lock()
192 defer s.Unlock()
193
194 return s.moduleOrphans(path, c)
195
196 }
197
198 func (s *State) moduleOrphans(path []string, c *config.Config) [][]string {
199 // direct keeps track of what direct children we have both in our config
200 // and in our state. childrenKeys keeps track of what isn't an orphan.
201 direct := make(map[string]struct{})
202 childrenKeys := make(map[string]struct{})
203 if c != nil {
204 for _, m := range c.Modules {
205 childrenKeys[m.Name] = struct{}{}
206 direct[m.Name] = struct{}{}
207 }
208 }
209
210 // Go over the direct children and find any that aren't in our keys.
211 var orphans [][]string
212 for _, m := range s.children(path) {
213 key := m.Path[len(m.Path)-1]
214
215 // Record that we found this key as a direct child. We use this
216 // later to find orphan nested modules.
217 direct[key] = struct{}{}
218
219 // If we have a direct child still in our config, it is not an orphan
220 if _, ok := childrenKeys[key]; ok {
221 continue
222 }
223
224 orphans = append(orphans, m.Path)
225 }
226
227 // Find the orphans that are nested...
228 for _, m := range s.Modules {
229 if m == nil {
230 continue
231 }
232
233 // We only want modules that are at least grandchildren
234 if len(m.Path) < len(path)+2 {
235 continue
236 }
237
238 // If it isn't part of our tree, continue
239 if !reflect.DeepEqual(path, m.Path[:len(path)]) {
240 continue
241 }
242
243 // If we have the direct child, then just skip it.
244 key := m.Path[len(path)]
245 if _, ok := direct[key]; ok {
246 continue
247 }
248
249 orphanPath := m.Path[:len(path)+1]
250
251 // Don't double-add if we've already added this orphan (which can happen if
252 // there are multiple nested sub-modules that get orphaned together).
253 alreadyAdded := false
254 for _, o := range orphans {
255 if reflect.DeepEqual(o, orphanPath) {
256 alreadyAdded = true
257 break
258 }
259 }
260 if alreadyAdded {
261 continue
262 }
263
264 // Add this orphan
265 orphans = append(orphans, orphanPath)
266 }
267
268 return orphans
269 }
270
271 // Empty returns true if the state is empty.
272 func (s *State) Empty() bool {
273 if s == nil {
274 return true
275 }
276 s.Lock()
277 defer s.Unlock()
278
279 return len(s.Modules) == 0
280 }
281
282 // HasResources returns true if the state contains any resources.
283 //
284 // This is similar to !s.Empty, but returns true also in the case where the
285 // state has modules but all of them are devoid of resources.
286 func (s *State) HasResources() bool {
287 if s.Empty() {
288 return false
289 }
290
291 for _, mod := range s.Modules {
292 if len(mod.Resources) > 0 {
293 return true
294 }
295 }
296
297 return false
298 }
299
300 // IsRemote returns true if State represents a state that exists and is
301 // remote.
302 func (s *State) IsRemote() bool {
303 if s == nil {
304 return false
305 }
306 s.Lock()
307 defer s.Unlock()
308
309 if s.Remote == nil {
310 return false
311 }
312 if s.Remote.Type == "" {
313 return false
314 }
315
316 return true
317 }
318
319 // Validate validates the integrity of this state file.
320 //
321 // Certain properties of the statefile are expected by Terraform in order
322 // to behave properly. The core of Terraform will assume that once it
323 // receives a State structure that it has been validated. This validation
324 // check should be called to ensure that.
325 //
326 // If this returns an error, then the user should be notified. The error
327 // response will include detailed information on the nature of the error.
328 func (s *State) Validate() error {
329 s.Lock()
330 defer s.Unlock()
331
332 var result error
333
334 // !!!! FOR DEVELOPERS !!!!
335 //
336 // Any errors returned from this Validate function will BLOCK TERRAFORM
337 // from loading a state file. Therefore, this should only contain checks
338 // that are only resolvable through manual intervention.
339 //
340 // !!!! FOR DEVELOPERS !!!!
341
342 // Make sure there are no duplicate module states. We open a new
343 // block here so we can use basic variable names and future validations
344 // can do the same.
345 {
346 found := make(map[string]struct{})
347 for _, ms := range s.Modules {
348 if ms == nil {
349 continue
350 }
351
352 key := strings.Join(ms.Path, ".")
353 if _, ok := found[key]; ok {
354 result = multierror.Append(result, fmt.Errorf(
355 strings.TrimSpace(stateValidateErrMultiModule), key))
356 continue
357 }
358
359 found[key] = struct{}{}
360 }
361 }
362
363 return result
364 }
365
366 // Remove removes the item in the state at the given address, returning
367 // any errors that may have occurred.
368 //
369 // If the address references a module state or resource, it will delete
370 // all children as well. To check what will be deleted, use a StateFilter
371 // first.
372 func (s *State) Remove(addr ...string) error {
373 s.Lock()
374 defer s.Unlock()
375
376 // Filter out what we need to delete
377 filter := &StateFilter{State: s}
378 results, err := filter.Filter(addr...)
379 if err != nil {
380 return err
381 }
382
383 // If we have no results, just exit early, we're not going to do anything.
384 // While what happens below is fairly fast, this is an important early
385 // exit since the prune below might modify the state more and we don't
386 // want to modify the state if we don't have to.
387 if len(results) == 0 {
388 return nil
389 }
390
391 // Go through each result and grab what we need
392 removed := make(map[interface{}]struct{})
393 for _, r := range results {
394 // Convert the path to our own type
395 path := append([]string{"root"}, r.Path...)
396
397 // If we removed this already, then ignore
398 if _, ok := removed[r.Value]; ok {
399 continue
400 }
401
402 // If we removed the parent already, then ignore
403 if r.Parent != nil {
404 if _, ok := removed[r.Parent.Value]; ok {
405 continue
406 }
407 }
408
409 // Add this to the removed list
410 removed[r.Value] = struct{}{}
411
412 switch v := r.Value.(type) {
413 case *ModuleState:
414 s.removeModule(path, v)
415 case *ResourceState:
416 s.removeResource(path, v)
417 case *InstanceState:
418 s.removeInstance(path, r.Parent.Value.(*ResourceState), v)
419 default:
420 return fmt.Errorf("unknown type to delete: %T", r.Value)
421 }
422 }
423
424 // Prune since the removal functions often do the bare minimum to
425 // remove a thing and may leave around dangling empty modules, resources,
426 // etc. Prune will clean that all up.
427 s.prune()
428
429 return nil
430 }
431
432 func (s *State) removeModule(path []string, v *ModuleState) {
433 for i, m := range s.Modules {
434 if m == v {
435 s.Modules, s.Modules[len(s.Modules)-1] = append(s.Modules[:i], s.Modules[i+1:]...), nil
436 return
437 }
438 }
439 }
440
441 func (s *State) removeResource(path []string, v *ResourceState) {
442 // Get the module this resource lives in. If it doesn't exist, we're done.
443 mod := s.moduleByPath(path)
444 if mod == nil {
445 return
446 }
447
448 // Find this resource. This is a O(N) lookup when if we had the key
449 // it could be O(1) but even with thousands of resources this shouldn't
450 // matter right now. We can easily up performance here when the time comes.
451 for k, r := range mod.Resources {
452 if r == v {
453 // Found it
454 delete(mod.Resources, k)
455 return
456 }
457 }
458 }
459
460 func (s *State) removeInstance(path []string, r *ResourceState, v *InstanceState) {
461 // Go through the resource and find the instance that matches this
462 // (if any) and remove it.
463
464 // Check primary
465 if r.Primary == v {
466 r.Primary = nil
467 return
468 }
469
470 // Check lists
471 lists := [][]*InstanceState{r.Deposed}
472 for _, is := range lists {
473 for i, instance := range is {
474 if instance == v {
475 // Found it, remove it
476 is, is[len(is)-1] = append(is[:i], is[i+1:]...), nil
477
478 // Done
479 return
480 }
481 }
482 }
483 }
484
485 // RootModule returns the ModuleState for the root module
486 func (s *State) RootModule() *ModuleState {
487 root := s.ModuleByPath(rootModulePath)
488 if root == nil {
489 panic("missing root module")
490 }
491 return root
492 }
493
494 // Equal tests if one state is equal to another.
495 func (s *State) Equal(other *State) bool {
496 // If one is nil, we do a direct check
497 if s == nil || other == nil {
498 return s == other
499 }
500
501 s.Lock()
502 defer s.Unlock()
503 return s.equal(other)
504 }
505
506 func (s *State) equal(other *State) bool {
507 if s == nil || other == nil {
508 return s == other
509 }
510
511 // If the versions are different, they're certainly not equal
512 if s.Version != other.Version {
513 return false
514 }
515
516 // If any of the modules are not equal, then this state isn't equal
517 if len(s.Modules) != len(other.Modules) {
518 return false
519 }
520 for _, m := range s.Modules {
521 // This isn't very optimal currently but works.
522 otherM := other.moduleByPath(m.Path)
523 if otherM == nil {
524 return false
525 }
526
527 // If they're not equal, then we're not equal!
528 if !m.Equal(otherM) {
529 return false
530 }
531 }
532
533 return true
534 }
535
536 // MarshalEqual is similar to Equal but provides a stronger definition of
537 // "equal", where two states are equal if and only if their serialized form
538 // is byte-for-byte identical.
539 //
540 // This is primarily useful for callers that are trying to save snapshots
541 // of state to persistent storage, allowing them to detect when a new
542 // snapshot must be taken.
543 //
544 // Note that the serial number and lineage are included in the serialized form,
545 // so it's the caller's responsibility to properly manage these attributes
546 // so that this method is only called on two states that have the same
547 // serial and lineage, unless detecting such differences is desired.
548 func (s *State) MarshalEqual(other *State) bool {
549 if s == nil && other == nil {
550 return true
551 } else if s == nil || other == nil {
552 return false
553 }
554
555 recvBuf := &bytes.Buffer{}
556 otherBuf := &bytes.Buffer{}
557
558 err := WriteState(s, recvBuf)
559 if err != nil {
560 // should never happen, since we're writing to a buffer
561 panic(err)
562 }
563
564 err = WriteState(other, otherBuf)
565 if err != nil {
566 // should never happen, since we're writing to a buffer
567 panic(err)
568 }
569
570 return bytes.Equal(recvBuf.Bytes(), otherBuf.Bytes())
571 }
572
573 type StateAgeComparison int
574
575 const (
576 StateAgeEqual StateAgeComparison = 0
577 StateAgeReceiverNewer StateAgeComparison = 1
578 StateAgeReceiverOlder StateAgeComparison = -1
579 )
580
581 // CompareAges compares one state with another for which is "older".
582 //
583 // This is a simple check using the state's serial, and is thus only as
584 // reliable as the serial itself. In the normal case, only one state
585 // exists for a given combination of lineage/serial, but Terraform
586 // does not guarantee this and so the result of this method should be
587 // used with care.
588 //
589 // Returns an integer that is negative if the receiver is older than
590 // the argument, positive if the converse, and zero if they are equal.
591 // An error is returned if the two states are not of the same lineage,
592 // in which case the integer returned has no meaning.
593 func (s *State) CompareAges(other *State) (StateAgeComparison, error) {
594 // nil states are "older" than actual states
595 switch {
596 case s != nil && other == nil:
597 return StateAgeReceiverNewer, nil
598 case s == nil && other != nil:
599 return StateAgeReceiverOlder, nil
600 case s == nil && other == nil:
601 return StateAgeEqual, nil
602 }
603
604 if !s.SameLineage(other) {
605 return StateAgeEqual, fmt.Errorf(
606 "can't compare two states of differing lineage",
607 )
608 }
609
610 s.Lock()
611 defer s.Unlock()
612
613 switch {
614 case s.Serial < other.Serial:
615 return StateAgeReceiverOlder, nil
616 case s.Serial > other.Serial:
617 return StateAgeReceiverNewer, nil
618 default:
619 return StateAgeEqual, nil
620 }
621 }
622
623 // SameLineage returns true only if the state given in argument belongs
624 // to the same "lineage" of states as the receiver.
625 func (s *State) SameLineage(other *State) bool {
626 s.Lock()
627 defer s.Unlock()
628
629 // If one of the states has no lineage then it is assumed to predate
630 // this concept, and so we'll accept it as belonging to any lineage
631 // so that a lineage string can be assigned to newer versions
632 // without breaking compatibility with older versions.
633 if s.Lineage == "" || other.Lineage == "" {
634 return true
635 }
636
637 return s.Lineage == other.Lineage
638 }
639
640 // DeepCopy performs a deep copy of the state structure and returns
641 // a new structure.
642 func (s *State) DeepCopy() *State {
643 if s == nil {
644 return nil
645 }
646
647 copy, err := copystructure.Config{Lock: true}.Copy(s)
648 if err != nil {
649 panic(err)
650 }
651
652 return copy.(*State)
653 }
654
655 // FromFutureTerraform checks if this state was written by a Terraform
656 // version from the future.
657 func (s *State) FromFutureTerraform() bool {
658 s.Lock()
659 defer s.Unlock()
660
661 // No TF version means it is certainly from the past
662 if s.TFVersion == "" {
663 return false
664 }
665
666 v := version.Must(version.NewVersion(s.TFVersion))
667 return SemVersion.LessThan(v)
668 }
669
670 func (s *State) Init() {
671 s.Lock()
672 defer s.Unlock()
673 s.init()
674 }
675
676 func (s *State) init() {
677 if s.Version == 0 {
678 s.Version = StateVersion
679 }
680
681 if s.moduleByPath(rootModulePath) == nil {
682 s.addModule(rootModulePath)
683 }
684 s.ensureHasLineage()
685
686 for _, mod := range s.Modules {
687 if mod != nil {
688 mod.init()
689 }
690 }
691
692 if s.Remote != nil {
693 s.Remote.init()
694 }
695
696 }
697
698 func (s *State) EnsureHasLineage() {
699 s.Lock()
700 defer s.Unlock()
701
702 s.ensureHasLineage()
703 }
704
705 func (s *State) ensureHasLineage() {
706 if s.Lineage == "" {
707 s.Lineage = uuid.NewV4().String()
708 log.Printf("[DEBUG] New state was assigned lineage %q\n", s.Lineage)
709 } else {
710 log.Printf("[TRACE] Preserving existing state lineage %q\n", s.Lineage)
711 }
712 }
713
714 // AddModuleState insert this module state and override any existing ModuleState
715 func (s *State) AddModuleState(mod *ModuleState) {
716 mod.init()
717 s.Lock()
718 defer s.Unlock()
719
720 s.addModuleState(mod)
721 }
722
723 func (s *State) addModuleState(mod *ModuleState) {
724 for i, m := range s.Modules {
725 if reflect.DeepEqual(m.Path, mod.Path) {
726 s.Modules[i] = mod
727 return
728 }
729 }
730
731 s.Modules = append(s.Modules, mod)
732 s.sort()
733 }
734
735 // prune is used to remove any resources that are no longer required
736 func (s *State) prune() {
737 if s == nil {
738 return
739 }
740
741 // Filter out empty modules.
742 // A module is always assumed to have a path, and it's length isn't always
743 // bounds checked later on. Modules may be "emptied" during destroy, but we
744 // never want to store those in the state.
745 for i := 0; i < len(s.Modules); i++ {
746 if s.Modules[i] == nil || len(s.Modules[i].Path) == 0 {
747 s.Modules = append(s.Modules[:i], s.Modules[i+1:]...)
748 i--
749 }
750 }
751
752 for _, mod := range s.Modules {
753 mod.prune()
754 }
755 if s.Remote != nil && s.Remote.Empty() {
756 s.Remote = nil
757 }
758 }
759
760 // sort sorts the modules
761 func (s *State) sort() {
762 sort.Sort(moduleStateSort(s.Modules))
763
764 // Allow modules to be sorted
765 for _, m := range s.Modules {
766 if m != nil {
767 m.sort()
768 }
769 }
770 }
771
772 func (s *State) String() string {
773 if s == nil {
774 return "<nil>"
775 }
776 s.Lock()
777 defer s.Unlock()
778
779 var buf bytes.Buffer
780 for _, m := range s.Modules {
781 mStr := m.String()
782
783 // If we're the root module, we just write the output directly.
784 if reflect.DeepEqual(m.Path, rootModulePath) {
785 buf.WriteString(mStr + "\n")
786 continue
787 }
788
789 buf.WriteString(fmt.Sprintf("module.%s:\n", strings.Join(m.Path[1:], ".")))
790
791 s := bufio.NewScanner(strings.NewReader(mStr))
792 for s.Scan() {
793 text := s.Text()
794 if text != "" {
795 text = " " + text
796 }
797
798 buf.WriteString(fmt.Sprintf("%s\n", text))
799 }
800 }
801
802 return strings.TrimSpace(buf.String())
803 }
804
805 // BackendState stores the configuration to connect to a remote backend.
806 type BackendState struct {
807 Type string `json:"type"` // Backend type
808 Config map[string]interface{} `json:"config"` // Backend raw config
809
810 // Hash is the hash code to uniquely identify the original source
811 // configuration. We use this to detect when there is a change in
812 // configuration even when "type" isn't changed.
813 Hash uint64 `json:"hash"`
814 }
815
816 // Empty returns true if BackendState has no state.
817 func (s *BackendState) Empty() bool {
818 return s == nil || s.Type == ""
819 }
820
821 // Rehash returns a unique content hash for this backend's configuration
822 // as a uint64 value.
823 // The Hash stored in the backend state needs to match the config itself, but
824 // we need to compare the backend config after it has been combined with all
825 // options.
826 // This function must match the implementation used by config.Backend.
827 func (s *BackendState) Rehash() uint64 {
828 if s == nil {
829 return 0
830 }
831
832 cfg := config.Backend{
833 Type: s.Type,
834 RawConfig: &config.RawConfig{
835 Raw: s.Config,
836 },
837 }
838
839 return cfg.Rehash()
840 }
841
842 // RemoteState is used to track the information about a remote
843 // state store that we push/pull state to.
844 type RemoteState struct {
845 // Type controls the client we use for the remote state
846 Type string `json:"type"`
847
848 // Config is used to store arbitrary configuration that
849 // is type specific
850 Config map[string]string `json:"config"`
851
852 mu sync.Mutex
853 }
854
855 func (s *RemoteState) Lock() { s.mu.Lock() }
856 func (s *RemoteState) Unlock() { s.mu.Unlock() }
857
858 func (r *RemoteState) init() {
859 r.Lock()
860 defer r.Unlock()
861
862 if r.Config == nil {
863 r.Config = make(map[string]string)
864 }
865 }
866
867 func (r *RemoteState) deepcopy() *RemoteState {
868 r.Lock()
869 defer r.Unlock()
870
871 confCopy := make(map[string]string, len(r.Config))
872 for k, v := range r.Config {
873 confCopy[k] = v
874 }
875 return &RemoteState{
876 Type: r.Type,
877 Config: confCopy,
878 }
879 }
880
881 func (r *RemoteState) Empty() bool {
882 if r == nil {
883 return true
884 }
885 r.Lock()
886 defer r.Unlock()
887
888 return r.Type == ""
889 }
890
891 func (r *RemoteState) Equals(other *RemoteState) bool {
892 r.Lock()
893 defer r.Unlock()
894
895 if r.Type != other.Type {
896 return false
897 }
898 if len(r.Config) != len(other.Config) {
899 return false
900 }
901 for k, v := range r.Config {
902 if other.Config[k] != v {
903 return false
904 }
905 }
906 return true
907 }
908
909 // OutputState is used to track the state relevant to a single output.
910 type OutputState struct {
911 // Sensitive describes whether the output is considered sensitive,
912 // which may lead to masking the value on screen in some cases.
913 Sensitive bool `json:"sensitive"`
914 // Type describes the structure of Value. Valid values are "string",
915 // "map" and "list"
916 Type string `json:"type"`
917 // Value contains the value of the output, in the structure described
918 // by the Type field.
919 Value interface{} `json:"value"`
920
921 mu sync.Mutex
922 }
923
924 func (s *OutputState) Lock() { s.mu.Lock() }
925 func (s *OutputState) Unlock() { s.mu.Unlock() }
926
927 func (s *OutputState) String() string {
928 return fmt.Sprintf("%#v", s.Value)
929 }
930
931 // Equal compares two OutputState structures for equality. nil values are
932 // considered equal.
933 func (s *OutputState) Equal(other *OutputState) bool {
934 if s == nil && other == nil {
935 return true
936 }
937
938 if s == nil || other == nil {
939 return false
940 }
941 s.Lock()
942 defer s.Unlock()
943
944 if s.Type != other.Type {
945 return false
946 }
947
948 if s.Sensitive != other.Sensitive {
949 return false
950 }
951
952 if !reflect.DeepEqual(s.Value, other.Value) {
953 return false
954 }
955
956 return true
957 }
958
959 func (s *OutputState) deepcopy() *OutputState {
960 if s == nil {
961 return nil
962 }
963
964 stateCopy, err := copystructure.Config{Lock: true}.Copy(s)
965 if err != nil {
966 panic(fmt.Errorf("Error copying output value: %s", err))
967 }
968
969 return stateCopy.(*OutputState)
970 }
971
972 // ModuleState is used to track all the state relevant to a single
973 // module. Previous to Terraform 0.3, all state belonged to the "root"
974 // module.
975 type ModuleState struct {
976 // Path is the import path from the root module. Modules imports are
977 // always disjoint, so the path represents amodule tree
978 Path []string `json:"path"`
979
980 // Outputs declared by the module and maintained for each module
981 // even though only the root module technically needs to be kept.
982 // This allows operators to inspect values at the boundaries.
983 Outputs map[string]*OutputState `json:"outputs"`
984
985 // Resources is a mapping of the logically named resource to
986 // the state of the resource. Each resource may actually have
987 // N instances underneath, although a user only needs to think
988 // about the 1:1 case.
989 Resources map[string]*ResourceState `json:"resources"`
990
991 // Dependencies are a list of things that this module relies on
992 // existing to remain intact. For example: an module may depend
993 // on a VPC ID given by an aws_vpc resource.
994 //
995 // Terraform uses this information to build valid destruction
996 // orders and to warn the user if they're destroying a module that
997 // another resource depends on.
998 //
999 // Things can be put into this list that may not be managed by
1000 // Terraform. If Terraform doesn't find a matching ID in the
1001 // overall state, then it assumes it isn't managed and doesn't
1002 // worry about it.
1003 Dependencies []string `json:"depends_on"`
1004
1005 mu sync.Mutex
1006 }
1007
1008 func (s *ModuleState) Lock() { s.mu.Lock() }
1009 func (s *ModuleState) Unlock() { s.mu.Unlock() }
1010
1011 // Equal tests whether one module state is equal to another.
1012 func (m *ModuleState) Equal(other *ModuleState) bool {
1013 m.Lock()
1014 defer m.Unlock()
1015
1016 // Paths must be equal
1017 if !reflect.DeepEqual(m.Path, other.Path) {
1018 return false
1019 }
1020
1021 // Outputs must be equal
1022 if len(m.Outputs) != len(other.Outputs) {
1023 return false
1024 }
1025 for k, v := range m.Outputs {
1026 if !other.Outputs[k].Equal(v) {
1027 return false
1028 }
1029 }
1030
1031 // Dependencies must be equal. This sorts these in place but
1032 // this shouldn't cause any problems.
1033 sort.Strings(m.Dependencies)
1034 sort.Strings(other.Dependencies)
1035 if len(m.Dependencies) != len(other.Dependencies) {
1036 return false
1037 }
1038 for i, d := range m.Dependencies {
1039 if other.Dependencies[i] != d {
1040 return false
1041 }
1042 }
1043
1044 // Resources must be equal
1045 if len(m.Resources) != len(other.Resources) {
1046 return false
1047 }
1048 for k, r := range m.Resources {
1049 otherR, ok := other.Resources[k]
1050 if !ok {
1051 return false
1052 }
1053
1054 if !r.Equal(otherR) {
1055 return false
1056 }
1057 }
1058
1059 return true
1060 }
1061
1062 // IsRoot says whether or not this module diff is for the root module.
1063 func (m *ModuleState) IsRoot() bool {
1064 m.Lock()
1065 defer m.Unlock()
1066 return reflect.DeepEqual(m.Path, rootModulePath)
1067 }
1068
1069 // IsDescendent returns true if other is a descendent of this module.
1070 func (m *ModuleState) IsDescendent(other *ModuleState) bool {
1071 m.Lock()
1072 defer m.Unlock()
1073
1074 i := len(m.Path)
1075 return len(other.Path) > i && reflect.DeepEqual(other.Path[:i], m.Path)
1076 }
1077
1078 // Orphans returns a list of keys of resources that are in the State
1079 // but aren't present in the configuration itself. Hence, these keys
1080 // represent the state of resources that are orphans.
1081 func (m *ModuleState) Orphans(c *config.Config) []string {
1082 m.Lock()
1083 defer m.Unlock()
1084
1085 keys := make(map[string]struct{})
1086 for k, _ := range m.Resources {
1087 keys[k] = struct{}{}
1088 }
1089
1090 if c != nil {
1091 for _, r := range c.Resources {
1092 delete(keys, r.Id())
1093
1094 for k, _ := range keys {
1095 if strings.HasPrefix(k, r.Id()+".") {
1096 delete(keys, k)
1097 }
1098 }
1099 }
1100 }
1101
1102 result := make([]string, 0, len(keys))
1103 for k, _ := range keys {
1104 result = append(result, k)
1105 }
1106
1107 return result
1108 }
1109
1110 // View returns a view with the given resource prefix.
1111 func (m *ModuleState) View(id string) *ModuleState {
1112 if m == nil {
1113 return m
1114 }
1115
1116 r := m.deepcopy()
1117 for k, _ := range r.Resources {
1118 if id == k || strings.HasPrefix(k, id+".") {
1119 continue
1120 }
1121
1122 delete(r.Resources, k)
1123 }
1124
1125 return r
1126 }
1127
1128 func (m *ModuleState) init() {
1129 m.Lock()
1130 defer m.Unlock()
1131
1132 if m.Path == nil {
1133 m.Path = []string{}
1134 }
1135 if m.Outputs == nil {
1136 m.Outputs = make(map[string]*OutputState)
1137 }
1138 if m.Resources == nil {
1139 m.Resources = make(map[string]*ResourceState)
1140 }
1141
1142 if m.Dependencies == nil {
1143 m.Dependencies = make([]string, 0)
1144 }
1145
1146 for _, rs := range m.Resources {
1147 rs.init()
1148 }
1149 }
1150
1151 func (m *ModuleState) deepcopy() *ModuleState {
1152 if m == nil {
1153 return nil
1154 }
1155
1156 stateCopy, err := copystructure.Config{Lock: true}.Copy(m)
1157 if err != nil {
1158 panic(err)
1159 }
1160
1161 return stateCopy.(*ModuleState)
1162 }
1163
1164 // prune is used to remove any resources that are no longer required
1165 func (m *ModuleState) prune() {
1166 m.Lock()
1167 defer m.Unlock()
1168
1169 for k, v := range m.Resources {
1170 if v == nil || (v.Primary == nil || v.Primary.ID == "") && len(v.Deposed) == 0 {
1171 delete(m.Resources, k)
1172 continue
1173 }
1174
1175 v.prune()
1176 }
1177
1178 for k, v := range m.Outputs {
1179 if v.Value == config.UnknownVariableValue {
1180 delete(m.Outputs, k)
1181 }
1182 }
1183
1184 m.Dependencies = uniqueStrings(m.Dependencies)
1185 }
1186
1187 func (m *ModuleState) sort() {
1188 for _, v := range m.Resources {
1189 v.sort()
1190 }
1191 }
1192
1193 func (m *ModuleState) String() string {
1194 m.Lock()
1195 defer m.Unlock()
1196
1197 var buf bytes.Buffer
1198
1199 if len(m.Resources) == 0 {
1200 buf.WriteString("<no state>")
1201 }
1202
1203 names := make([]string, 0, len(m.Resources))
1204 for name, _ := range m.Resources {
1205 names = append(names, name)
1206 }
1207
1208 sort.Sort(resourceNameSort(names))
1209
1210 for _, k := range names {
1211 rs := m.Resources[k]
1212 var id string
1213 if rs.Primary != nil {
1214 id = rs.Primary.ID
1215 }
1216 if id == "" {
1217 id = "<not created>"
1218 }
1219
1220 taintStr := ""
1221 if rs.Primary.Tainted {
1222 taintStr = " (tainted)"
1223 }
1224
1225 deposedStr := ""
1226 if len(rs.Deposed) > 0 {
1227 deposedStr = fmt.Sprintf(" (%d deposed)", len(rs.Deposed))
1228 }
1229
1230 buf.WriteString(fmt.Sprintf("%s:%s%s\n", k, taintStr, deposedStr))
1231 buf.WriteString(fmt.Sprintf(" ID = %s\n", id))
1232 if rs.Provider != "" {
1233 buf.WriteString(fmt.Sprintf(" provider = %s\n", rs.Provider))
1234 }
1235
1236 var attributes map[string]string
1237 if rs.Primary != nil {
1238 attributes = rs.Primary.Attributes
1239 }
1240 attrKeys := make([]string, 0, len(attributes))
1241 for ak, _ := range attributes {
1242 if ak == "id" {
1243 continue
1244 }
1245
1246 attrKeys = append(attrKeys, ak)
1247 }
1248
1249 sort.Strings(attrKeys)
1250
1251 for _, ak := range attrKeys {
1252 av := attributes[ak]
1253 buf.WriteString(fmt.Sprintf(" %s = %s\n", ak, av))
1254 }
1255
1256 for idx, t := range rs.Deposed {
1257 taintStr := ""
1258 if t.Tainted {
1259 taintStr = " (tainted)"
1260 }
1261 buf.WriteString(fmt.Sprintf(" Deposed ID %d = %s%s\n", idx+1, t.ID, taintStr))
1262 }
1263
1264 if len(rs.Dependencies) > 0 {
1265 buf.WriteString(fmt.Sprintf("\n Dependencies:\n"))
1266 for _, dep := range rs.Dependencies {
1267 buf.WriteString(fmt.Sprintf(" %s\n", dep))
1268 }
1269 }
1270 }
1271
1272 if len(m.Outputs) > 0 {
1273 buf.WriteString("\nOutputs:\n\n")
1274
1275 ks := make([]string, 0, len(m.Outputs))
1276 for k, _ := range m.Outputs {
1277 ks = append(ks, k)
1278 }
1279
1280 sort.Strings(ks)
1281
1282 for _, k := range ks {
1283 v := m.Outputs[k]
1284 switch vTyped := v.Value.(type) {
1285 case string:
1286 buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
1287 case []interface{}:
1288 buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
1289 case map[string]interface{}:
1290 var mapKeys []string
1291 for key, _ := range vTyped {
1292 mapKeys = append(mapKeys, key)
1293 }
1294 sort.Strings(mapKeys)
1295
1296 var mapBuf bytes.Buffer
1297 mapBuf.WriteString("{")
1298 for _, key := range mapKeys {
1299 mapBuf.WriteString(fmt.Sprintf("%s:%s ", key, vTyped[key]))
1300 }
1301 mapBuf.WriteString("}")
1302
1303 buf.WriteString(fmt.Sprintf("%s = %s\n", k, mapBuf.String()))
1304 }
1305 }
1306 }
1307
1308 return buf.String()
1309 }
1310
1311 // ResourceStateKey is a structured representation of the key used for the
1312 // ModuleState.Resources mapping
1313 type ResourceStateKey struct {
1314 Name string
1315 Type string
1316 Mode config.ResourceMode
1317 Index int
1318 }
1319
1320 // Equal determines whether two ResourceStateKeys are the same
1321 func (rsk *ResourceStateKey) Equal(other *ResourceStateKey) bool {
1322 if rsk == nil || other == nil {
1323 return false
1324 }
1325 if rsk.Mode != other.Mode {
1326 return false
1327 }
1328 if rsk.Type != other.Type {
1329 return false
1330 }
1331 if rsk.Name != other.Name {
1332 return false
1333 }
1334 if rsk.Index != other.Index {
1335 return false
1336 }
1337 return true
1338 }
1339
1340 func (rsk *ResourceStateKey) String() string {
1341 if rsk == nil {
1342 return ""
1343 }
1344 var prefix string
1345 switch rsk.Mode {
1346 case config.ManagedResourceMode:
1347 prefix = ""
1348 case config.DataResourceMode:
1349 prefix = "data."
1350 default:
1351 panic(fmt.Errorf("unknown resource mode %s", rsk.Mode))
1352 }
1353 if rsk.Index == -1 {
1354 return fmt.Sprintf("%s%s.%s", prefix, rsk.Type, rsk.Name)
1355 }
1356 return fmt.Sprintf("%s%s.%s.%d", prefix, rsk.Type, rsk.Name, rsk.Index)
1357 }
1358
1359 // ParseResourceStateKey accepts a key in the format used by
1360 // ModuleState.Resources and returns a resource name and resource index. In the
1361 // state, a resource has the format "type.name.index" or "type.name". In the
1362 // latter case, the index is returned as -1.
1363 func ParseResourceStateKey(k string) (*ResourceStateKey, error) {
1364 parts := strings.Split(k, ".")
1365 mode := config.ManagedResourceMode
1366 if len(parts) > 0 && parts[0] == "data" {
1367 mode = config.DataResourceMode
1368 // Don't need the constant "data" prefix for parsing
1369 // now that we've figured out the mode.
1370 parts = parts[1:]
1371 }
1372 if len(parts) < 2 || len(parts) > 3 {
1373 return nil, fmt.Errorf("Malformed resource state key: %s", k)
1374 }
1375 rsk := &ResourceStateKey{
1376 Mode: mode,
1377 Type: parts[0],
1378 Name: parts[1],
1379 Index: -1,
1380 }
1381 if len(parts) == 3 {
1382 index, err := strconv.Atoi(parts[2])
1383 if err != nil {
1384 return nil, fmt.Errorf("Malformed resource state key index: %s", k)
1385 }
1386 rsk.Index = index
1387 }
1388 return rsk, nil
1389 }
1390
1391 // ResourceState holds the state of a resource that is used so that
1392 // a provider can find and manage an existing resource as well as for
1393 // storing attributes that are used to populate variables of child
1394 // resources.
1395 //
1396 // Attributes has attributes about the created resource that are
1397 // queryable in interpolation: "${type.id.attr}"
1398 //
1399 // Extra is just extra data that a provider can return that we store
1400 // for later, but is not exposed in any way to the user.
1401 //
1402 type ResourceState struct {
1403 // This is filled in and managed by Terraform, and is the resource
1404 // type itself such as "mycloud_instance". If a resource provider sets
1405 // this value, it won't be persisted.
1406 Type string `json:"type"`
1407
1408 // Dependencies are a list of things that this resource relies on
1409 // existing to remain intact. For example: an AWS instance might
1410 // depend on a subnet (which itself might depend on a VPC, and so
1411 // on).
1412 //
1413 // Terraform uses this information to build valid destruction
1414 // orders and to warn the user if they're destroying a resource that
1415 // another resource depends on.
1416 //
1417 // Things can be put into this list that may not be managed by
1418 // Terraform. If Terraform doesn't find a matching ID in the
1419 // overall state, then it assumes it isn't managed and doesn't
1420 // worry about it.
1421 Dependencies []string `json:"depends_on"`
1422
1423 // Primary is the current active instance for this resource.
1424 // It can be replaced but only after a successful creation.
1425 // This is the instances on which providers will act.
1426 Primary *InstanceState `json:"primary"`
1427
1428 // Deposed is used in the mechanics of CreateBeforeDestroy: the existing
1429 // Primary is Deposed to get it out of the way for the replacement Primary to
1430 // be created by Apply. If the replacement Primary creates successfully, the
1431 // Deposed instance is cleaned up.
1432 //
1433 // If there were problems creating the replacement Primary, the Deposed
1434 // instance and the (now tainted) replacement Primary will be swapped so the
1435 // tainted replacement will be cleaned up instead.
1436 //
1437 // An instance will remain in the Deposed list until it is successfully
1438 // destroyed and purged.
1439 Deposed []*InstanceState `json:"deposed"`
1440
1441 // Provider is used when a resource is connected to a provider with an alias.
1442 // If this string is empty, the resource is connected to the default provider,
1443 // e.g. "aws_instance" goes with the "aws" provider.
1444 // If the resource block contained a "provider" key, that value will be set here.
1445 Provider string `json:"provider"`
1446
1447 mu sync.Mutex
1448 }
1449
1450 func (s *ResourceState) Lock() { s.mu.Lock() }
1451 func (s *ResourceState) Unlock() { s.mu.Unlock() }
1452
1453 // Equal tests whether two ResourceStates are equal.
1454 func (s *ResourceState) Equal(other *ResourceState) bool {
1455 s.Lock()
1456 defer s.Unlock()
1457
1458 if s.Type != other.Type {
1459 return false
1460 }
1461
1462 if s.Provider != other.Provider {
1463 return false
1464 }
1465
1466 // Dependencies must be equal
1467 sort.Strings(s.Dependencies)
1468 sort.Strings(other.Dependencies)
1469 if len(s.Dependencies) != len(other.Dependencies) {
1470 return false
1471 }
1472 for i, d := range s.Dependencies {
1473 if other.Dependencies[i] != d {
1474 return false
1475 }
1476 }
1477
1478 // States must be equal
1479 if !s.Primary.Equal(other.Primary) {
1480 return false
1481 }
1482
1483 return true
1484 }
1485
1486 // Taint marks a resource as tainted.
1487 func (s *ResourceState) Taint() {
1488 s.Lock()
1489 defer s.Unlock()
1490
1491 if s.Primary != nil {
1492 s.Primary.Tainted = true
1493 }
1494 }
1495
1496 // Untaint unmarks a resource as tainted.
1497 func (s *ResourceState) Untaint() {
1498 s.Lock()
1499 defer s.Unlock()
1500
1501 if s.Primary != nil {
1502 s.Primary.Tainted = false
1503 }
1504 }
1505
1506 func (s *ResourceState) init() {
1507 s.Lock()
1508 defer s.Unlock()
1509
1510 if s.Primary == nil {
1511 s.Primary = &InstanceState{}
1512 }
1513 s.Primary.init()
1514
1515 if s.Dependencies == nil {
1516 s.Dependencies = []string{}
1517 }
1518
1519 if s.Deposed == nil {
1520 s.Deposed = make([]*InstanceState, 0)
1521 }
1522 }
1523
1524 func (s *ResourceState) deepcopy() *ResourceState {
1525 copy, err := copystructure.Config{Lock: true}.Copy(s)
1526 if err != nil {
1527 panic(err)
1528 }
1529
1530 return copy.(*ResourceState)
1531 }
1532
1533 // prune is used to remove any instances that are no longer required
1534 func (s *ResourceState) prune() {
1535 s.Lock()
1536 defer s.Unlock()
1537
1538 n := len(s.Deposed)
1539 for i := 0; i < n; i++ {
1540 inst := s.Deposed[i]
1541 if inst == nil || inst.ID == "" {
1542 copy(s.Deposed[i:], s.Deposed[i+1:])
1543 s.Deposed[n-1] = nil
1544 n--
1545 i--
1546 }
1547 }
1548 s.Deposed = s.Deposed[:n]
1549
1550 s.Dependencies = uniqueStrings(s.Dependencies)
1551 }
1552
1553 func (s *ResourceState) sort() {
1554 s.Lock()
1555 defer s.Unlock()
1556
1557 sort.Strings(s.Dependencies)
1558 }
1559
1560 func (s *ResourceState) String() string {
1561 s.Lock()
1562 defer s.Unlock()
1563
1564 var buf bytes.Buffer
1565 buf.WriteString(fmt.Sprintf("Type = %s", s.Type))
1566 return buf.String()
1567 }
1568
1569 // InstanceState is used to track the unique state information belonging
1570 // to a given instance.
1571 type InstanceState struct {
1572 // A unique ID for this resource. This is opaque to Terraform
1573 // and is only meant as a lookup mechanism for the providers.
1574 ID string `json:"id"`
1575
1576 // Attributes are basic information about the resource. Any keys here
1577 // are accessible in variable format within Terraform configurations:
1578 // ${resourcetype.name.attribute}.
1579 Attributes map[string]string `json:"attributes"`
1580
1581 // Ephemeral is used to store any state associated with this instance
1582 // that is necessary for the Terraform run to complete, but is not
1583 // persisted to a state file.
1584 Ephemeral EphemeralState `json:"-"`
1585
1586 // Meta is a simple K/V map that is persisted to the State but otherwise
1587 // ignored by Terraform core. It's meant to be used for accounting by
1588 // external client code. The value here must only contain Go primitives
1589 // and collections.
1590 Meta map[string]interface{} `json:"meta"`
1591
1592 // Tainted is used to mark a resource for recreation.
1593 Tainted bool `json:"tainted"`
1594
1595 mu sync.Mutex
1596 }
1597
1598 func (s *InstanceState) Lock() { s.mu.Lock() }
1599 func (s *InstanceState) Unlock() { s.mu.Unlock() }
1600
1601 func (s *InstanceState) init() {
1602 s.Lock()
1603 defer s.Unlock()
1604
1605 if s.Attributes == nil {
1606 s.Attributes = make(map[string]string)
1607 }
1608 if s.Meta == nil {
1609 s.Meta = make(map[string]interface{})
1610 }
1611 s.Ephemeral.init()
1612 }
1613
1614 // Copy all the Fields from another InstanceState
1615 func (s *InstanceState) Set(from *InstanceState) {
1616 s.Lock()
1617 defer s.Unlock()
1618
1619 from.Lock()
1620 defer from.Unlock()
1621
1622 s.ID = from.ID
1623 s.Attributes = from.Attributes
1624 s.Ephemeral = from.Ephemeral
1625 s.Meta = from.Meta
1626 s.Tainted = from.Tainted
1627 }
1628
1629 func (s *InstanceState) DeepCopy() *InstanceState {
1630 copy, err := copystructure.Config{Lock: true}.Copy(s)
1631 if err != nil {
1632 panic(err)
1633 }
1634
1635 return copy.(*InstanceState)
1636 }
1637
1638 func (s *InstanceState) Empty() bool {
1639 if s == nil {
1640 return true
1641 }
1642 s.Lock()
1643 defer s.Unlock()
1644
1645 return s.ID == ""
1646 }
1647
1648 func (s *InstanceState) Equal(other *InstanceState) bool {
1649 // Short circuit some nil checks
1650 if s == nil || other == nil {
1651 return s == other
1652 }
1653 s.Lock()
1654 defer s.Unlock()
1655
1656 // IDs must be equal
1657 if s.ID != other.ID {
1658 return false
1659 }
1660
1661 // Attributes must be equal
1662 if len(s.Attributes) != len(other.Attributes) {
1663 return false
1664 }
1665 for k, v := range s.Attributes {
1666 otherV, ok := other.Attributes[k]
1667 if !ok {
1668 return false
1669 }
1670
1671 if v != otherV {
1672 return false
1673 }
1674 }
1675
1676 // Meta must be equal
1677 if len(s.Meta) != len(other.Meta) {
1678 return false
1679 }
1680 if s.Meta != nil && other.Meta != nil {
1681 // We only do the deep check if both are non-nil. If one is nil
1682 // we treat it as equal since their lengths are both zero (check
1683 // above).
1684 if !reflect.DeepEqual(s.Meta, other.Meta) {
1685 return false
1686 }
1687 }
1688
1689 if s.Tainted != other.Tainted {
1690 return false
1691 }
1692
1693 return true
1694 }
1695
1696 // MergeDiff takes a ResourceDiff and merges the attributes into
1697 // this resource state in order to generate a new state. This new
1698 // state can be used to provide updated attribute lookups for
1699 // variable interpolation.
1700 //
1701 // If the diff attribute requires computing the value, and hence
1702 // won't be available until apply, the value is replaced with the
1703 // computeID.
1704 func (s *InstanceState) MergeDiff(d *InstanceDiff) *InstanceState {
1705 result := s.DeepCopy()
1706 if result == nil {
1707 result = new(InstanceState)
1708 }
1709 result.init()
1710
1711 if s != nil {
1712 s.Lock()
1713 defer s.Unlock()
1714 for k, v := range s.Attributes {
1715 result.Attributes[k] = v
1716 }
1717 }
1718 if d != nil {
1719 for k, diff := range d.CopyAttributes() {
1720 if diff.NewRemoved {
1721 delete(result.Attributes, k)
1722 continue
1723 }
1724 if diff.NewComputed {
1725 result.Attributes[k] = config.UnknownVariableValue
1726 continue
1727 }
1728
1729 result.Attributes[k] = diff.New
1730 }
1731 }
1732
1733 return result
1734 }
1735
1736 func (s *InstanceState) String() string {
1737 s.Lock()
1738 defer s.Unlock()
1739
1740 var buf bytes.Buffer
1741
1742 if s == nil || s.ID == "" {
1743 return "<not created>"
1744 }
1745
1746 buf.WriteString(fmt.Sprintf("ID = %s\n", s.ID))
1747
1748 attributes := s.Attributes
1749 attrKeys := make([]string, 0, len(attributes))
1750 for ak, _ := range attributes {
1751 if ak == "id" {
1752 continue
1753 }
1754
1755 attrKeys = append(attrKeys, ak)
1756 }
1757 sort.Strings(attrKeys)
1758
1759 for _, ak := range attrKeys {
1760 av := attributes[ak]
1761 buf.WriteString(fmt.Sprintf("%s = %s\n", ak, av))
1762 }
1763
1764 buf.WriteString(fmt.Sprintf("Tainted = %t\n", s.Tainted))
1765
1766 return buf.String()
1767 }
1768
1769 // EphemeralState is used for transient state that is only kept in-memory
1770 type EphemeralState struct {
1771 // ConnInfo is used for the providers to export information which is
1772 // used to connect to the resource for provisioning. For example,
1773 // this could contain SSH or WinRM credentials.
1774 ConnInfo map[string]string `json:"-"`
1775
1776 // Type is used to specify the resource type for this instance. This is only
1777 // required for import operations (as documented). If the documentation
1778 // doesn't state that you need to set this, then don't worry about
1779 // setting it.
1780 Type string `json:"-"`
1781 }
1782
1783 func (e *EphemeralState) init() {
1784 if e.ConnInfo == nil {
1785 e.ConnInfo = make(map[string]string)
1786 }
1787 }
1788
1789 func (e *EphemeralState) DeepCopy() *EphemeralState {
1790 copy, err := copystructure.Config{Lock: true}.Copy(e)
1791 if err != nil {
1792 panic(err)
1793 }
1794
1795 return copy.(*EphemeralState)
1796 }
1797
1798 type jsonStateVersionIdentifier struct {
1799 Version int `json:"version"`
1800 }
1801
1802 // Check if this is a V0 format - the magic bytes at the start of the file
1803 // should be "tfstate" if so. We no longer support upgrading this type of
1804 // state but return an error message explaining to a user how they can
1805 // upgrade via the 0.6.x series.
1806 func testForV0State(buf *bufio.Reader) error {
1807 start, err := buf.Peek(len("tfstate"))
1808 if err != nil {
1809 return fmt.Errorf("Failed to check for magic bytes: %v", err)
1810 }
1811 if string(start) == "tfstate" {
1812 return fmt.Errorf("Terraform 0.7 no longer supports upgrading the binary state\n" +
1813 "format which was used prior to Terraform 0.3. Please upgrade\n" +
1814 "this state file using Terraform 0.6.16 prior to using it with\n" +
1815 "Terraform 0.7.")
1816 }
1817
1818 return nil
1819 }
1820
1821 // ErrNoState is returned by ReadState when the io.Reader contains no data
1822 var ErrNoState = errors.New("no state")
1823
1824 // ReadState reads a state structure out of a reader in the format that
1825 // was written by WriteState.
1826 func ReadState(src io.Reader) (*State, error) {
1827 buf := bufio.NewReader(src)
1828 if _, err := buf.Peek(1); err != nil {
1829 // the error is either io.EOF or "invalid argument", and both are from
1830 // an empty state.
1831 return nil, ErrNoState
1832 }
1833
1834 if err := testForV0State(buf); err != nil {
1835 return nil, err
1836 }
1837
1838 // If we are JSON we buffer the whole thing in memory so we can read it twice.
1839 // This is suboptimal, but will work for now.
1840 jsonBytes, err := ioutil.ReadAll(buf)
1841 if err != nil {
1842 return nil, fmt.Errorf("Reading state file failed: %v", err)
1843 }
1844
1845 versionIdentifier := &jsonStateVersionIdentifier{}
1846 if err := json.Unmarshal(jsonBytes, versionIdentifier); err != nil {
1847 return nil, fmt.Errorf("Decoding state file version failed: %v", err)
1848 }
1849
1850 var result *State
1851 switch versionIdentifier.Version {
1852 case 0:
1853 return nil, fmt.Errorf("State version 0 is not supported as JSON.")
1854 case 1:
1855 v1State, err := ReadStateV1(jsonBytes)
1856 if err != nil {
1857 return nil, err
1858 }
1859
1860 v2State, err := upgradeStateV1ToV2(v1State)
1861 if err != nil {
1862 return nil, err
1863 }
1864
1865 v3State, err := upgradeStateV2ToV3(v2State)
1866 if err != nil {
1867 return nil, err
1868 }
1869
1870 // increment the Serial whenever we upgrade state
1871 v3State.Serial++
1872 result = v3State
1873 case 2:
1874 v2State, err := ReadStateV2(jsonBytes)
1875 if err != nil {
1876 return nil, err
1877 }
1878 v3State, err := upgradeStateV2ToV3(v2State)
1879 if err != nil {
1880 return nil, err
1881 }
1882
1883 v3State.Serial++
1884 result = v3State
1885 case 3:
1886 v3State, err := ReadStateV3(jsonBytes)
1887 if err != nil {
1888 return nil, err
1889 }
1890
1891 result = v3State
1892 default:
1893 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1894 SemVersion.String(), versionIdentifier.Version)
1895 }
1896
1897 // If we reached this place we must have a result set
1898 if result == nil {
1899 panic("resulting state in load not set, assertion failed")
1900 }
1901
1902 // Prune the state when read it. Its possible to write unpruned states or
1903 // for a user to make a state unpruned (nil-ing a module state for example).
1904 result.prune()
1905
1906 // Validate the state file is valid
1907 if err := result.Validate(); err != nil {
1908 return nil, err
1909 }
1910
1911 return result, nil
1912 }
1913
1914 func ReadStateV1(jsonBytes []byte) (*stateV1, error) {
1915 v1State := &stateV1{}
1916 if err := json.Unmarshal(jsonBytes, v1State); err != nil {
1917 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1918 }
1919
1920 if v1State.Version != 1 {
1921 return nil, fmt.Errorf("Decoded state version did not match the decoder selection: "+
1922 "read %d, expected 1", v1State.Version)
1923 }
1924
1925 return v1State, nil
1926 }
1927
1928 func ReadStateV2(jsonBytes []byte) (*State, error) {
1929 state := &State{}
1930 if err := json.Unmarshal(jsonBytes, state); err != nil {
1931 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1932 }
1933
1934 // Check the version, this to ensure we don't read a future
1935 // version that we don't understand
1936 if state.Version > StateVersion {
1937 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1938 SemVersion.String(), state.Version)
1939 }
1940
1941 // Make sure the version is semantic
1942 if state.TFVersion != "" {
1943 if _, err := version.NewVersion(state.TFVersion); err != nil {
1944 return nil, fmt.Errorf(
1945 "State contains invalid version: %s\n\n"+
1946 "Terraform validates the version format prior to writing it. This\n"+
1947 "means that this is invalid of the state becoming corrupted through\n"+
1948 "some external means. Please manually modify the Terraform version\n"+
1949 "field to be a proper semantic version.",
1950 state.TFVersion)
1951 }
1952 }
1953
1954 // catch any unitialized fields in the state
1955 state.init()
1956
1957 // Sort it
1958 state.sort()
1959
1960 return state, nil
1961 }
1962
1963 func ReadStateV3(jsonBytes []byte) (*State, error) {
1964 state := &State{}
1965 if err := json.Unmarshal(jsonBytes, state); err != nil {
1966 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1967 }
1968
1969 // Check the version, this to ensure we don't read a future
1970 // version that we don't understand
1971 if state.Version > StateVersion {
1972 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1973 SemVersion.String(), state.Version)
1974 }
1975
1976 // Make sure the version is semantic
1977 if state.TFVersion != "" {
1978 if _, err := version.NewVersion(state.TFVersion); err != nil {
1979 return nil, fmt.Errorf(
1980 "State contains invalid version: %s\n\n"+
1981 "Terraform validates the version format prior to writing it. This\n"+
1982 "means that this is invalid of the state becoming corrupted through\n"+
1983 "some external means. Please manually modify the Terraform version\n"+
1984 "field to be a proper semantic version.",
1985 state.TFVersion)
1986 }
1987 }
1988
1989 // catch any unitialized fields in the state
1990 state.init()
1991
1992 // Sort it
1993 state.sort()
1994
1995 // Now we write the state back out to detect any changes in normaliztion.
1996 // If our state is now written out differently, bump the serial number to
1997 // prevent conflicts.
1998 var buf bytes.Buffer
1999 err := WriteState(state, &buf)
2000 if err != nil {
2001 return nil, err
2002 }
2003
2004 if !bytes.Equal(jsonBytes, buf.Bytes()) {
2005 log.Println("[INFO] state modified during read or write. incrementing serial number")
2006 state.Serial++
2007 }
2008
2009 return state, nil
2010 }
2011
2012 // WriteState writes a state somewhere in a binary format.
2013 func WriteState(d *State, dst io.Writer) error {
2014 // writing a nil state is a noop.
2015 if d == nil {
2016 return nil
2017 }
2018
2019 // make sure we have no uninitialized fields
2020 d.init()
2021
2022 // Make sure it is sorted
2023 d.sort()
2024
2025 // Ensure the version is set
2026 d.Version = StateVersion
2027
2028 // If the TFVersion is set, verify it. We used to just set the version
2029 // here, but this isn't safe since it changes the MD5 sum on some remote
2030 // state storage backends such as Atlas. We now leave it be if needed.
2031 if d.TFVersion != "" {
2032 if _, err := version.NewVersion(d.TFVersion); err != nil {
2033 return fmt.Errorf(
2034 "Error writing state, invalid version: %s\n\n"+
2035 "The Terraform version when writing the state must be a semantic\n"+
2036 "version.",
2037 d.TFVersion)
2038 }
2039 }
2040
2041 // Encode the data in a human-friendly way
2042 data, err := json.MarshalIndent(d, "", " ")
2043 if err != nil {
2044 return fmt.Errorf("Failed to encode state: %s", err)
2045 }
2046
2047 // We append a newline to the data because MarshalIndent doesn't
2048 data = append(data, '\n')
2049
2050 // Write the data out to the dst
2051 if _, err := io.Copy(dst, bytes.NewReader(data)); err != nil {
2052 return fmt.Errorf("Failed to write state: %v", err)
2053 }
2054
2055 return nil
2056 }
2057
2058 // resourceNameSort implements the sort.Interface to sort name parts lexically for
2059 // strings and numerically for integer indexes.
2060 type resourceNameSort []string
2061
2062 func (r resourceNameSort) Len() int { return len(r) }
2063 func (r resourceNameSort) Swap(i, j int) { r[i], r[j] = r[j], r[i] }
2064
2065 func (r resourceNameSort) Less(i, j int) bool {
2066 iParts := strings.Split(r[i], ".")
2067 jParts := strings.Split(r[j], ".")
2068
2069 end := len(iParts)
2070 if len(jParts) < end {
2071 end = len(jParts)
2072 }
2073
2074 for idx := 0; idx < end; idx++ {
2075 if iParts[idx] == jParts[idx] {
2076 continue
2077 }
2078
2079 // sort on the first non-matching part
2080 iInt, iIntErr := strconv.Atoi(iParts[idx])
2081 jInt, jIntErr := strconv.Atoi(jParts[idx])
2082
2083 switch {
2084 case iIntErr == nil && jIntErr == nil:
2085 // sort numerically if both parts are integers
2086 return iInt < jInt
2087 case iIntErr == nil:
2088 // numbers sort before strings
2089 return true
2090 case jIntErr == nil:
2091 return false
2092 default:
2093 return iParts[idx] < jParts[idx]
2094 }
2095 }
2096
2097 return r[i] < r[j]
2098 }
2099
2100 // moduleStateSort implements sort.Interface to sort module states
2101 type moduleStateSort []*ModuleState
2102
2103 func (s moduleStateSort) Len() int {
2104 return len(s)
2105 }
2106
2107 func (s moduleStateSort) Less(i, j int) bool {
2108 a := s[i]
2109 b := s[j]
2110
2111 // If either is nil, then the nil one is "less" than
2112 if a == nil || b == nil {
2113 return a == nil
2114 }
2115
2116 // If the lengths are different, then the shorter one always wins
2117 if len(a.Path) != len(b.Path) {
2118 return len(a.Path) < len(b.Path)
2119 }
2120
2121 // Otherwise, compare lexically
2122 return strings.Join(a.Path, ".") < strings.Join(b.Path, ".")
2123 }
2124
2125 func (s moduleStateSort) Swap(i, j int) {
2126 s[i], s[j] = s[j], s[i]
2127 }
2128
2129 const stateValidateErrMultiModule = `
2130 Multiple modules with the same path: %s
2131
2132 This means that there are multiple entries in the "modules" field
2133 in your state file that point to the same module. This will cause Terraform
2134 to behave in unexpected and error prone ways and is invalid. Please back up
2135 and modify your state file manually to resolve this.
2136 `