]> git.immae.eu Git - github/fretlink/terraform-provider-statuscake.git/blob - vendor/github.com/hashicorp/terraform/terraform/state.go
Initial transfer of provider code
[github/fretlink/terraform-provider-statuscake.git] / vendor / github.com / hashicorp / terraform / terraform / state.go
1 package terraform
2
3 import (
4 "bufio"
5 "bytes"
6 "encoding/json"
7 "errors"
8 "fmt"
9 "io"
10 "io/ioutil"
11 "log"
12 "reflect"
13 "sort"
14 "strconv"
15 "strings"
16 "sync"
17
18 "github.com/hashicorp/go-multierror"
19 "github.com/hashicorp/go-version"
20 "github.com/hashicorp/terraform/config"
21 "github.com/mitchellh/copystructure"
22 "github.com/satori/go.uuid"
23 )
24
25 const (
26 // StateVersion is the current version for our state file
27 StateVersion = 3
28 )
29
30 // rootModulePath is the path of the root module
31 var rootModulePath = []string{"root"}
32
33 // normalizeModulePath takes a raw module path and returns a path that
34 // has the rootModulePath prepended to it. If I could go back in time I
35 // would've never had a rootModulePath (empty path would be root). We can
36 // still fix this but thats a big refactor that my branch doesn't make sense
37 // for. Instead, this function normalizes paths.
38 func normalizeModulePath(p []string) []string {
39 k := len(rootModulePath)
40
41 // If we already have a root module prefix, we're done
42 if len(p) >= len(rootModulePath) {
43 if reflect.DeepEqual(p[:k], rootModulePath) {
44 return p
45 }
46 }
47
48 // None? Prefix it
49 result := make([]string, len(rootModulePath)+len(p))
50 copy(result, rootModulePath)
51 copy(result[k:], p)
52 return result
53 }
54
55 // State keeps track of a snapshot state-of-the-world that Terraform
56 // can use to keep track of what real world resources it is actually
57 // managing.
58 type State struct {
59 // Version is the state file protocol version.
60 Version int `json:"version"`
61
62 // TFVersion is the version of Terraform that wrote this state.
63 TFVersion string `json:"terraform_version,omitempty"`
64
65 // Serial is incremented on any operation that modifies
66 // the State file. It is used to detect potentially conflicting
67 // updates.
68 Serial int64 `json:"serial"`
69
70 // Lineage is set when a new, blank state is created and then
71 // never updated. This allows us to determine whether the serials
72 // of two states can be meaningfully compared.
73 // Apart from the guarantee that collisions between two lineages
74 // are very unlikely, this value is opaque and external callers
75 // should only compare lineage strings byte-for-byte for equality.
76 Lineage string `json:"lineage"`
77
78 // Remote is used to track the metadata required to
79 // pull and push state files from a remote storage endpoint.
80 Remote *RemoteState `json:"remote,omitempty"`
81
82 // Backend tracks the configuration for the backend in use with
83 // this state. This is used to track any changes in the backend
84 // configuration.
85 Backend *BackendState `json:"backend,omitempty"`
86
87 // Modules contains all the modules in a breadth-first order
88 Modules []*ModuleState `json:"modules"`
89
90 mu sync.Mutex
91 }
92
93 func (s *State) Lock() { s.mu.Lock() }
94 func (s *State) Unlock() { s.mu.Unlock() }
95
96 // NewState is used to initialize a blank state
97 func NewState() *State {
98 s := &State{}
99 s.init()
100 return s
101 }
102
103 // Children returns the ModuleStates that are direct children of
104 // the given path. If the path is "root", for example, then children
105 // returned might be "root.child", but not "root.child.grandchild".
106 func (s *State) Children(path []string) []*ModuleState {
107 s.Lock()
108 defer s.Unlock()
109 // TODO: test
110
111 return s.children(path)
112 }
113
114 func (s *State) children(path []string) []*ModuleState {
115 result := make([]*ModuleState, 0)
116 for _, m := range s.Modules {
117 if m == nil {
118 continue
119 }
120
121 if len(m.Path) != len(path)+1 {
122 continue
123 }
124 if !reflect.DeepEqual(path, m.Path[:len(path)]) {
125 continue
126 }
127
128 result = append(result, m)
129 }
130
131 return result
132 }
133
134 // AddModule adds the module with the given path to the state.
135 //
136 // This should be the preferred method to add module states since it
137 // allows us to optimize lookups later as well as control sorting.
138 func (s *State) AddModule(path []string) *ModuleState {
139 s.Lock()
140 defer s.Unlock()
141
142 return s.addModule(path)
143 }
144
145 func (s *State) addModule(path []string) *ModuleState {
146 // check if the module exists first
147 m := s.moduleByPath(path)
148 if m != nil {
149 return m
150 }
151
152 m = &ModuleState{Path: path}
153 m.init()
154 s.Modules = append(s.Modules, m)
155 s.sort()
156 return m
157 }
158
159 // ModuleByPath is used to lookup the module state for the given path.
160 // This should be the preferred lookup mechanism as it allows for future
161 // lookup optimizations.
162 func (s *State) ModuleByPath(path []string) *ModuleState {
163 if s == nil {
164 return nil
165 }
166 s.Lock()
167 defer s.Unlock()
168
169 return s.moduleByPath(path)
170 }
171
172 func (s *State) moduleByPath(path []string) *ModuleState {
173 for _, mod := range s.Modules {
174 if mod == nil {
175 continue
176 }
177 if mod.Path == nil {
178 panic("missing module path")
179 }
180 if reflect.DeepEqual(mod.Path, path) {
181 return mod
182 }
183 }
184 return nil
185 }
186
187 // ModuleOrphans returns all the module orphans in this state by
188 // returning their full paths. These paths can be used with ModuleByPath
189 // to return the actual state.
190 func (s *State) ModuleOrphans(path []string, c *config.Config) [][]string {
191 s.Lock()
192 defer s.Unlock()
193
194 return s.moduleOrphans(path, c)
195
196 }
197
198 func (s *State) moduleOrphans(path []string, c *config.Config) [][]string {
199 // direct keeps track of what direct children we have both in our config
200 // and in our state. childrenKeys keeps track of what isn't an orphan.
201 direct := make(map[string]struct{})
202 childrenKeys := make(map[string]struct{})
203 if c != nil {
204 for _, m := range c.Modules {
205 childrenKeys[m.Name] = struct{}{}
206 direct[m.Name] = struct{}{}
207 }
208 }
209
210 // Go over the direct children and find any that aren't in our keys.
211 var orphans [][]string
212 for _, m := range s.children(path) {
213 key := m.Path[len(m.Path)-1]
214
215 // Record that we found this key as a direct child. We use this
216 // later to find orphan nested modules.
217 direct[key] = struct{}{}
218
219 // If we have a direct child still in our config, it is not an orphan
220 if _, ok := childrenKeys[key]; ok {
221 continue
222 }
223
224 orphans = append(orphans, m.Path)
225 }
226
227 // Find the orphans that are nested...
228 for _, m := range s.Modules {
229 if m == nil {
230 continue
231 }
232
233 // We only want modules that are at least grandchildren
234 if len(m.Path) < len(path)+2 {
235 continue
236 }
237
238 // If it isn't part of our tree, continue
239 if !reflect.DeepEqual(path, m.Path[:len(path)]) {
240 continue
241 }
242
243 // If we have the direct child, then just skip it.
244 key := m.Path[len(path)]
245 if _, ok := direct[key]; ok {
246 continue
247 }
248
249 orphanPath := m.Path[:len(path)+1]
250
251 // Don't double-add if we've already added this orphan (which can happen if
252 // there are multiple nested sub-modules that get orphaned together).
253 alreadyAdded := false
254 for _, o := range orphans {
255 if reflect.DeepEqual(o, orphanPath) {
256 alreadyAdded = true
257 break
258 }
259 }
260 if alreadyAdded {
261 continue
262 }
263
264 // Add this orphan
265 orphans = append(orphans, orphanPath)
266 }
267
268 return orphans
269 }
270
271 // Empty returns true if the state is empty.
272 func (s *State) Empty() bool {
273 if s == nil {
274 return true
275 }
276 s.Lock()
277 defer s.Unlock()
278
279 return len(s.Modules) == 0
280 }
281
282 // HasResources returns true if the state contains any resources.
283 //
284 // This is similar to !s.Empty, but returns true also in the case where the
285 // state has modules but all of them are devoid of resources.
286 func (s *State) HasResources() bool {
287 if s.Empty() {
288 return false
289 }
290
291 for _, mod := range s.Modules {
292 if len(mod.Resources) > 0 {
293 return true
294 }
295 }
296
297 return false
298 }
299
300 // IsRemote returns true if State represents a state that exists and is
301 // remote.
302 func (s *State) IsRemote() bool {
303 if s == nil {
304 return false
305 }
306 s.Lock()
307 defer s.Unlock()
308
309 if s.Remote == nil {
310 return false
311 }
312 if s.Remote.Type == "" {
313 return false
314 }
315
316 return true
317 }
318
319 // Validate validates the integrity of this state file.
320 //
321 // Certain properties of the statefile are expected by Terraform in order
322 // to behave properly. The core of Terraform will assume that once it
323 // receives a State structure that it has been validated. This validation
324 // check should be called to ensure that.
325 //
326 // If this returns an error, then the user should be notified. The error
327 // response will include detailed information on the nature of the error.
328 func (s *State) Validate() error {
329 s.Lock()
330 defer s.Unlock()
331
332 var result error
333
334 // !!!! FOR DEVELOPERS !!!!
335 //
336 // Any errors returned from this Validate function will BLOCK TERRAFORM
337 // from loading a state file. Therefore, this should only contain checks
338 // that are only resolvable through manual intervention.
339 //
340 // !!!! FOR DEVELOPERS !!!!
341
342 // Make sure there are no duplicate module states. We open a new
343 // block here so we can use basic variable names and future validations
344 // can do the same.
345 {
346 found := make(map[string]struct{})
347 for _, ms := range s.Modules {
348 if ms == nil {
349 continue
350 }
351
352 key := strings.Join(ms.Path, ".")
353 if _, ok := found[key]; ok {
354 result = multierror.Append(result, fmt.Errorf(
355 strings.TrimSpace(stateValidateErrMultiModule), key))
356 continue
357 }
358
359 found[key] = struct{}{}
360 }
361 }
362
363 return result
364 }
365
366 // Remove removes the item in the state at the given address, returning
367 // any errors that may have occurred.
368 //
369 // If the address references a module state or resource, it will delete
370 // all children as well. To check what will be deleted, use a StateFilter
371 // first.
372 func (s *State) Remove(addr ...string) error {
373 s.Lock()
374 defer s.Unlock()
375
376 // Filter out what we need to delete
377 filter := &StateFilter{State: s}
378 results, err := filter.Filter(addr...)
379 if err != nil {
380 return err
381 }
382
383 // If we have no results, just exit early, we're not going to do anything.
384 // While what happens below is fairly fast, this is an important early
385 // exit since the prune below might modify the state more and we don't
386 // want to modify the state if we don't have to.
387 if len(results) == 0 {
388 return nil
389 }
390
391 // Go through each result and grab what we need
392 removed := make(map[interface{}]struct{})
393 for _, r := range results {
394 // Convert the path to our own type
395 path := append([]string{"root"}, r.Path...)
396
397 // If we removed this already, then ignore
398 if _, ok := removed[r.Value]; ok {
399 continue
400 }
401
402 // If we removed the parent already, then ignore
403 if r.Parent != nil {
404 if _, ok := removed[r.Parent.Value]; ok {
405 continue
406 }
407 }
408
409 // Add this to the removed list
410 removed[r.Value] = struct{}{}
411
412 switch v := r.Value.(type) {
413 case *ModuleState:
414 s.removeModule(path, v)
415 case *ResourceState:
416 s.removeResource(path, v)
417 case *InstanceState:
418 s.removeInstance(path, r.Parent.Value.(*ResourceState), v)
419 default:
420 return fmt.Errorf("unknown type to delete: %T", r.Value)
421 }
422 }
423
424 // Prune since the removal functions often do the bare minimum to
425 // remove a thing and may leave around dangling empty modules, resources,
426 // etc. Prune will clean that all up.
427 s.prune()
428
429 return nil
430 }
431
432 func (s *State) removeModule(path []string, v *ModuleState) {
433 for i, m := range s.Modules {
434 if m == v {
435 s.Modules, s.Modules[len(s.Modules)-1] = append(s.Modules[:i], s.Modules[i+1:]...), nil
436 return
437 }
438 }
439 }
440
441 func (s *State) removeResource(path []string, v *ResourceState) {
442 // Get the module this resource lives in. If it doesn't exist, we're done.
443 mod := s.moduleByPath(path)
444 if mod == nil {
445 return
446 }
447
448 // Find this resource. This is a O(N) lookup when if we had the key
449 // it could be O(1) but even with thousands of resources this shouldn't
450 // matter right now. We can easily up performance here when the time comes.
451 for k, r := range mod.Resources {
452 if r == v {
453 // Found it
454 delete(mod.Resources, k)
455 return
456 }
457 }
458 }
459
460 func (s *State) removeInstance(path []string, r *ResourceState, v *InstanceState) {
461 // Go through the resource and find the instance that matches this
462 // (if any) and remove it.
463
464 // Check primary
465 if r.Primary == v {
466 r.Primary = nil
467 return
468 }
469
470 // Check lists
471 lists := [][]*InstanceState{r.Deposed}
472 for _, is := range lists {
473 for i, instance := range is {
474 if instance == v {
475 // Found it, remove it
476 is, is[len(is)-1] = append(is[:i], is[i+1:]...), nil
477
478 // Done
479 return
480 }
481 }
482 }
483 }
484
485 // RootModule returns the ModuleState for the root module
486 func (s *State) RootModule() *ModuleState {
487 root := s.ModuleByPath(rootModulePath)
488 if root == nil {
489 panic("missing root module")
490 }
491 return root
492 }
493
494 // Equal tests if one state is equal to another.
495 func (s *State) Equal(other *State) bool {
496 // If one is nil, we do a direct check
497 if s == nil || other == nil {
498 return s == other
499 }
500
501 s.Lock()
502 defer s.Unlock()
503 return s.equal(other)
504 }
505
506 func (s *State) equal(other *State) bool {
507 if s == nil || other == nil {
508 return s == other
509 }
510
511 // If the versions are different, they're certainly not equal
512 if s.Version != other.Version {
513 return false
514 }
515
516 // If any of the modules are not equal, then this state isn't equal
517 if len(s.Modules) != len(other.Modules) {
518 return false
519 }
520 for _, m := range s.Modules {
521 // This isn't very optimal currently but works.
522 otherM := other.moduleByPath(m.Path)
523 if otherM == nil {
524 return false
525 }
526
527 // If they're not equal, then we're not equal!
528 if !m.Equal(otherM) {
529 return false
530 }
531 }
532
533 return true
534 }
535
536 type StateAgeComparison int
537
538 const (
539 StateAgeEqual StateAgeComparison = 0
540 StateAgeReceiverNewer StateAgeComparison = 1
541 StateAgeReceiverOlder StateAgeComparison = -1
542 )
543
544 // CompareAges compares one state with another for which is "older".
545 //
546 // This is a simple check using the state's serial, and is thus only as
547 // reliable as the serial itself. In the normal case, only one state
548 // exists for a given combination of lineage/serial, but Terraform
549 // does not guarantee this and so the result of this method should be
550 // used with care.
551 //
552 // Returns an integer that is negative if the receiver is older than
553 // the argument, positive if the converse, and zero if they are equal.
554 // An error is returned if the two states are not of the same lineage,
555 // in which case the integer returned has no meaning.
556 func (s *State) CompareAges(other *State) (StateAgeComparison, error) {
557 // nil states are "older" than actual states
558 switch {
559 case s != nil && other == nil:
560 return StateAgeReceiverNewer, nil
561 case s == nil && other != nil:
562 return StateAgeReceiverOlder, nil
563 case s == nil && other == nil:
564 return StateAgeEqual, nil
565 }
566
567 if !s.SameLineage(other) {
568 return StateAgeEqual, fmt.Errorf(
569 "can't compare two states of differing lineage",
570 )
571 }
572
573 s.Lock()
574 defer s.Unlock()
575
576 switch {
577 case s.Serial < other.Serial:
578 return StateAgeReceiverOlder, nil
579 case s.Serial > other.Serial:
580 return StateAgeReceiverNewer, nil
581 default:
582 return StateAgeEqual, nil
583 }
584 }
585
586 // SameLineage returns true only if the state given in argument belongs
587 // to the same "lineage" of states as the receiver.
588 func (s *State) SameLineage(other *State) bool {
589 s.Lock()
590 defer s.Unlock()
591
592 // If one of the states has no lineage then it is assumed to predate
593 // this concept, and so we'll accept it as belonging to any lineage
594 // so that a lineage string can be assigned to newer versions
595 // without breaking compatibility with older versions.
596 if s.Lineage == "" || other.Lineage == "" {
597 return true
598 }
599
600 return s.Lineage == other.Lineage
601 }
602
603 // DeepCopy performs a deep copy of the state structure and returns
604 // a new structure.
605 func (s *State) DeepCopy() *State {
606 copy, err := copystructure.Config{Lock: true}.Copy(s)
607 if err != nil {
608 panic(err)
609 }
610
611 return copy.(*State)
612 }
613
614 // IncrementSerialMaybe increments the serial number of this state
615 // if it different from the other state.
616 func (s *State) IncrementSerialMaybe(other *State) {
617 if s == nil {
618 return
619 }
620 if other == nil {
621 return
622 }
623 s.Lock()
624 defer s.Unlock()
625
626 if s.Serial > other.Serial {
627 return
628 }
629 if other.TFVersion != s.TFVersion || !s.equal(other) {
630 if other.Serial > s.Serial {
631 s.Serial = other.Serial
632 }
633
634 s.Serial++
635 }
636 }
637
638 // FromFutureTerraform checks if this state was written by a Terraform
639 // version from the future.
640 func (s *State) FromFutureTerraform() bool {
641 s.Lock()
642 defer s.Unlock()
643
644 // No TF version means it is certainly from the past
645 if s.TFVersion == "" {
646 return false
647 }
648
649 v := version.Must(version.NewVersion(s.TFVersion))
650 return SemVersion.LessThan(v)
651 }
652
653 func (s *State) Init() {
654 s.Lock()
655 defer s.Unlock()
656 s.init()
657 }
658
659 func (s *State) init() {
660 if s.Version == 0 {
661 s.Version = StateVersion
662 }
663 if s.moduleByPath(rootModulePath) == nil {
664 s.addModule(rootModulePath)
665 }
666 s.ensureHasLineage()
667
668 for _, mod := range s.Modules {
669 if mod != nil {
670 mod.init()
671 }
672 }
673
674 if s.Remote != nil {
675 s.Remote.init()
676 }
677
678 }
679
680 func (s *State) EnsureHasLineage() {
681 s.Lock()
682 defer s.Unlock()
683
684 s.ensureHasLineage()
685 }
686
687 func (s *State) ensureHasLineage() {
688 if s.Lineage == "" {
689 s.Lineage = uuid.NewV4().String()
690 log.Printf("[DEBUG] New state was assigned lineage %q\n", s.Lineage)
691 } else {
692 log.Printf("[TRACE] Preserving existing state lineage %q\n", s.Lineage)
693 }
694 }
695
696 // AddModuleState insert this module state and override any existing ModuleState
697 func (s *State) AddModuleState(mod *ModuleState) {
698 mod.init()
699 s.Lock()
700 defer s.Unlock()
701
702 s.addModuleState(mod)
703 }
704
705 func (s *State) addModuleState(mod *ModuleState) {
706 for i, m := range s.Modules {
707 if reflect.DeepEqual(m.Path, mod.Path) {
708 s.Modules[i] = mod
709 return
710 }
711 }
712
713 s.Modules = append(s.Modules, mod)
714 s.sort()
715 }
716
717 // prune is used to remove any resources that are no longer required
718 func (s *State) prune() {
719 if s == nil {
720 return
721 }
722
723 // Filter out empty modules.
724 // A module is always assumed to have a path, and it's length isn't always
725 // bounds checked later on. Modules may be "emptied" during destroy, but we
726 // never want to store those in the state.
727 for i := 0; i < len(s.Modules); i++ {
728 if s.Modules[i] == nil || len(s.Modules[i].Path) == 0 {
729 s.Modules = append(s.Modules[:i], s.Modules[i+1:]...)
730 i--
731 }
732 }
733
734 for _, mod := range s.Modules {
735 mod.prune()
736 }
737 if s.Remote != nil && s.Remote.Empty() {
738 s.Remote = nil
739 }
740 }
741
742 // sort sorts the modules
743 func (s *State) sort() {
744 sort.Sort(moduleStateSort(s.Modules))
745
746 // Allow modules to be sorted
747 for _, m := range s.Modules {
748 if m != nil {
749 m.sort()
750 }
751 }
752 }
753
754 func (s *State) String() string {
755 if s == nil {
756 return "<nil>"
757 }
758 s.Lock()
759 defer s.Unlock()
760
761 var buf bytes.Buffer
762 for _, m := range s.Modules {
763 mStr := m.String()
764
765 // If we're the root module, we just write the output directly.
766 if reflect.DeepEqual(m.Path, rootModulePath) {
767 buf.WriteString(mStr + "\n")
768 continue
769 }
770
771 buf.WriteString(fmt.Sprintf("module.%s:\n", strings.Join(m.Path[1:], ".")))
772
773 s := bufio.NewScanner(strings.NewReader(mStr))
774 for s.Scan() {
775 text := s.Text()
776 if text != "" {
777 text = " " + text
778 }
779
780 buf.WriteString(fmt.Sprintf("%s\n", text))
781 }
782 }
783
784 return strings.TrimSpace(buf.String())
785 }
786
787 // BackendState stores the configuration to connect to a remote backend.
788 type BackendState struct {
789 Type string `json:"type"` // Backend type
790 Config map[string]interface{} `json:"config"` // Backend raw config
791
792 // Hash is the hash code to uniquely identify the original source
793 // configuration. We use this to detect when there is a change in
794 // configuration even when "type" isn't changed.
795 Hash uint64 `json:"hash"`
796 }
797
798 // Empty returns true if BackendState has no state.
799 func (s *BackendState) Empty() bool {
800 return s == nil || s.Type == ""
801 }
802
803 // Rehash returns a unique content hash for this backend's configuration
804 // as a uint64 value.
805 // The Hash stored in the backend state needs to match the config itself, but
806 // we need to compare the backend config after it has been combined with all
807 // options.
808 // This function must match the implementation used by config.Backend.
809 func (s *BackendState) Rehash() uint64 {
810 if s == nil {
811 return 0
812 }
813
814 cfg := config.Backend{
815 Type: s.Type,
816 RawConfig: &config.RawConfig{
817 Raw: s.Config,
818 },
819 }
820
821 return cfg.Rehash()
822 }
823
824 // RemoteState is used to track the information about a remote
825 // state store that we push/pull state to.
826 type RemoteState struct {
827 // Type controls the client we use for the remote state
828 Type string `json:"type"`
829
830 // Config is used to store arbitrary configuration that
831 // is type specific
832 Config map[string]string `json:"config"`
833
834 mu sync.Mutex
835 }
836
837 func (s *RemoteState) Lock() { s.mu.Lock() }
838 func (s *RemoteState) Unlock() { s.mu.Unlock() }
839
840 func (r *RemoteState) init() {
841 r.Lock()
842 defer r.Unlock()
843
844 if r.Config == nil {
845 r.Config = make(map[string]string)
846 }
847 }
848
849 func (r *RemoteState) deepcopy() *RemoteState {
850 r.Lock()
851 defer r.Unlock()
852
853 confCopy := make(map[string]string, len(r.Config))
854 for k, v := range r.Config {
855 confCopy[k] = v
856 }
857 return &RemoteState{
858 Type: r.Type,
859 Config: confCopy,
860 }
861 }
862
863 func (r *RemoteState) Empty() bool {
864 if r == nil {
865 return true
866 }
867 r.Lock()
868 defer r.Unlock()
869
870 return r.Type == ""
871 }
872
873 func (r *RemoteState) Equals(other *RemoteState) bool {
874 r.Lock()
875 defer r.Unlock()
876
877 if r.Type != other.Type {
878 return false
879 }
880 if len(r.Config) != len(other.Config) {
881 return false
882 }
883 for k, v := range r.Config {
884 if other.Config[k] != v {
885 return false
886 }
887 }
888 return true
889 }
890
891 // OutputState is used to track the state relevant to a single output.
892 type OutputState struct {
893 // Sensitive describes whether the output is considered sensitive,
894 // which may lead to masking the value on screen in some cases.
895 Sensitive bool `json:"sensitive"`
896 // Type describes the structure of Value. Valid values are "string",
897 // "map" and "list"
898 Type string `json:"type"`
899 // Value contains the value of the output, in the structure described
900 // by the Type field.
901 Value interface{} `json:"value"`
902
903 mu sync.Mutex
904 }
905
906 func (s *OutputState) Lock() { s.mu.Lock() }
907 func (s *OutputState) Unlock() { s.mu.Unlock() }
908
909 func (s *OutputState) String() string {
910 return fmt.Sprintf("%#v", s.Value)
911 }
912
913 // Equal compares two OutputState structures for equality. nil values are
914 // considered equal.
915 func (s *OutputState) Equal(other *OutputState) bool {
916 if s == nil && other == nil {
917 return true
918 }
919
920 if s == nil || other == nil {
921 return false
922 }
923 s.Lock()
924 defer s.Unlock()
925
926 if s.Type != other.Type {
927 return false
928 }
929
930 if s.Sensitive != other.Sensitive {
931 return false
932 }
933
934 if !reflect.DeepEqual(s.Value, other.Value) {
935 return false
936 }
937
938 return true
939 }
940
941 func (s *OutputState) deepcopy() *OutputState {
942 if s == nil {
943 return nil
944 }
945
946 stateCopy, err := copystructure.Config{Lock: true}.Copy(s)
947 if err != nil {
948 panic(fmt.Errorf("Error copying output value: %s", err))
949 }
950
951 return stateCopy.(*OutputState)
952 }
953
954 // ModuleState is used to track all the state relevant to a single
955 // module. Previous to Terraform 0.3, all state belonged to the "root"
956 // module.
957 type ModuleState struct {
958 // Path is the import path from the root module. Modules imports are
959 // always disjoint, so the path represents amodule tree
960 Path []string `json:"path"`
961
962 // Outputs declared by the module and maintained for each module
963 // even though only the root module technically needs to be kept.
964 // This allows operators to inspect values at the boundaries.
965 Outputs map[string]*OutputState `json:"outputs"`
966
967 // Resources is a mapping of the logically named resource to
968 // the state of the resource. Each resource may actually have
969 // N instances underneath, although a user only needs to think
970 // about the 1:1 case.
971 Resources map[string]*ResourceState `json:"resources"`
972
973 // Dependencies are a list of things that this module relies on
974 // existing to remain intact. For example: an module may depend
975 // on a VPC ID given by an aws_vpc resource.
976 //
977 // Terraform uses this information to build valid destruction
978 // orders and to warn the user if they're destroying a module that
979 // another resource depends on.
980 //
981 // Things can be put into this list that may not be managed by
982 // Terraform. If Terraform doesn't find a matching ID in the
983 // overall state, then it assumes it isn't managed and doesn't
984 // worry about it.
985 Dependencies []string `json:"depends_on"`
986
987 mu sync.Mutex
988 }
989
990 func (s *ModuleState) Lock() { s.mu.Lock() }
991 func (s *ModuleState) Unlock() { s.mu.Unlock() }
992
993 // Equal tests whether one module state is equal to another.
994 func (m *ModuleState) Equal(other *ModuleState) bool {
995 m.Lock()
996 defer m.Unlock()
997
998 // Paths must be equal
999 if !reflect.DeepEqual(m.Path, other.Path) {
1000 return false
1001 }
1002
1003 // Outputs must be equal
1004 if len(m.Outputs) != len(other.Outputs) {
1005 return false
1006 }
1007 for k, v := range m.Outputs {
1008 if !other.Outputs[k].Equal(v) {
1009 return false
1010 }
1011 }
1012
1013 // Dependencies must be equal. This sorts these in place but
1014 // this shouldn't cause any problems.
1015 sort.Strings(m.Dependencies)
1016 sort.Strings(other.Dependencies)
1017 if len(m.Dependencies) != len(other.Dependencies) {
1018 return false
1019 }
1020 for i, d := range m.Dependencies {
1021 if other.Dependencies[i] != d {
1022 return false
1023 }
1024 }
1025
1026 // Resources must be equal
1027 if len(m.Resources) != len(other.Resources) {
1028 return false
1029 }
1030 for k, r := range m.Resources {
1031 otherR, ok := other.Resources[k]
1032 if !ok {
1033 return false
1034 }
1035
1036 if !r.Equal(otherR) {
1037 return false
1038 }
1039 }
1040
1041 return true
1042 }
1043
1044 // IsRoot says whether or not this module diff is for the root module.
1045 func (m *ModuleState) IsRoot() bool {
1046 m.Lock()
1047 defer m.Unlock()
1048 return reflect.DeepEqual(m.Path, rootModulePath)
1049 }
1050
1051 // IsDescendent returns true if other is a descendent of this module.
1052 func (m *ModuleState) IsDescendent(other *ModuleState) bool {
1053 m.Lock()
1054 defer m.Unlock()
1055
1056 i := len(m.Path)
1057 return len(other.Path) > i && reflect.DeepEqual(other.Path[:i], m.Path)
1058 }
1059
1060 // Orphans returns a list of keys of resources that are in the State
1061 // but aren't present in the configuration itself. Hence, these keys
1062 // represent the state of resources that are orphans.
1063 func (m *ModuleState) Orphans(c *config.Config) []string {
1064 m.Lock()
1065 defer m.Unlock()
1066
1067 keys := make(map[string]struct{})
1068 for k, _ := range m.Resources {
1069 keys[k] = struct{}{}
1070 }
1071
1072 if c != nil {
1073 for _, r := range c.Resources {
1074 delete(keys, r.Id())
1075
1076 for k, _ := range keys {
1077 if strings.HasPrefix(k, r.Id()+".") {
1078 delete(keys, k)
1079 }
1080 }
1081 }
1082 }
1083
1084 result := make([]string, 0, len(keys))
1085 for k, _ := range keys {
1086 result = append(result, k)
1087 }
1088
1089 return result
1090 }
1091
1092 // View returns a view with the given resource prefix.
1093 func (m *ModuleState) View(id string) *ModuleState {
1094 if m == nil {
1095 return m
1096 }
1097
1098 r := m.deepcopy()
1099 for k, _ := range r.Resources {
1100 if id == k || strings.HasPrefix(k, id+".") {
1101 continue
1102 }
1103
1104 delete(r.Resources, k)
1105 }
1106
1107 return r
1108 }
1109
1110 func (m *ModuleState) init() {
1111 m.Lock()
1112 defer m.Unlock()
1113
1114 if m.Path == nil {
1115 m.Path = []string{}
1116 }
1117 if m.Outputs == nil {
1118 m.Outputs = make(map[string]*OutputState)
1119 }
1120 if m.Resources == nil {
1121 m.Resources = make(map[string]*ResourceState)
1122 }
1123
1124 if m.Dependencies == nil {
1125 m.Dependencies = make([]string, 0)
1126 }
1127
1128 for _, rs := range m.Resources {
1129 rs.init()
1130 }
1131 }
1132
1133 func (m *ModuleState) deepcopy() *ModuleState {
1134 if m == nil {
1135 return nil
1136 }
1137
1138 stateCopy, err := copystructure.Config{Lock: true}.Copy(m)
1139 if err != nil {
1140 panic(err)
1141 }
1142
1143 return stateCopy.(*ModuleState)
1144 }
1145
1146 // prune is used to remove any resources that are no longer required
1147 func (m *ModuleState) prune() {
1148 m.Lock()
1149 defer m.Unlock()
1150
1151 for k, v := range m.Resources {
1152 if v == nil || (v.Primary == nil || v.Primary.ID == "") && len(v.Deposed) == 0 {
1153 delete(m.Resources, k)
1154 continue
1155 }
1156
1157 v.prune()
1158 }
1159
1160 for k, v := range m.Outputs {
1161 if v.Value == config.UnknownVariableValue {
1162 delete(m.Outputs, k)
1163 }
1164 }
1165
1166 m.Dependencies = uniqueStrings(m.Dependencies)
1167 }
1168
1169 func (m *ModuleState) sort() {
1170 for _, v := range m.Resources {
1171 v.sort()
1172 }
1173 }
1174
1175 func (m *ModuleState) String() string {
1176 m.Lock()
1177 defer m.Unlock()
1178
1179 var buf bytes.Buffer
1180
1181 if len(m.Resources) == 0 {
1182 buf.WriteString("<no state>")
1183 }
1184
1185 names := make([]string, 0, len(m.Resources))
1186 for name, _ := range m.Resources {
1187 names = append(names, name)
1188 }
1189
1190 sort.Sort(resourceNameSort(names))
1191
1192 for _, k := range names {
1193 rs := m.Resources[k]
1194 var id string
1195 if rs.Primary != nil {
1196 id = rs.Primary.ID
1197 }
1198 if id == "" {
1199 id = "<not created>"
1200 }
1201
1202 taintStr := ""
1203 if rs.Primary.Tainted {
1204 taintStr = " (tainted)"
1205 }
1206
1207 deposedStr := ""
1208 if len(rs.Deposed) > 0 {
1209 deposedStr = fmt.Sprintf(" (%d deposed)", len(rs.Deposed))
1210 }
1211
1212 buf.WriteString(fmt.Sprintf("%s:%s%s\n", k, taintStr, deposedStr))
1213 buf.WriteString(fmt.Sprintf(" ID = %s\n", id))
1214 if rs.Provider != "" {
1215 buf.WriteString(fmt.Sprintf(" provider = %s\n", rs.Provider))
1216 }
1217
1218 var attributes map[string]string
1219 if rs.Primary != nil {
1220 attributes = rs.Primary.Attributes
1221 }
1222 attrKeys := make([]string, 0, len(attributes))
1223 for ak, _ := range attributes {
1224 if ak == "id" {
1225 continue
1226 }
1227
1228 attrKeys = append(attrKeys, ak)
1229 }
1230
1231 sort.Strings(attrKeys)
1232
1233 for _, ak := range attrKeys {
1234 av := attributes[ak]
1235 buf.WriteString(fmt.Sprintf(" %s = %s\n", ak, av))
1236 }
1237
1238 for idx, t := range rs.Deposed {
1239 taintStr := ""
1240 if t.Tainted {
1241 taintStr = " (tainted)"
1242 }
1243 buf.WriteString(fmt.Sprintf(" Deposed ID %d = %s%s\n", idx+1, t.ID, taintStr))
1244 }
1245
1246 if len(rs.Dependencies) > 0 {
1247 buf.WriteString(fmt.Sprintf("\n Dependencies:\n"))
1248 for _, dep := range rs.Dependencies {
1249 buf.WriteString(fmt.Sprintf(" %s\n", dep))
1250 }
1251 }
1252 }
1253
1254 if len(m.Outputs) > 0 {
1255 buf.WriteString("\nOutputs:\n\n")
1256
1257 ks := make([]string, 0, len(m.Outputs))
1258 for k, _ := range m.Outputs {
1259 ks = append(ks, k)
1260 }
1261
1262 sort.Strings(ks)
1263
1264 for _, k := range ks {
1265 v := m.Outputs[k]
1266 switch vTyped := v.Value.(type) {
1267 case string:
1268 buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
1269 case []interface{}:
1270 buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
1271 case map[string]interface{}:
1272 var mapKeys []string
1273 for key, _ := range vTyped {
1274 mapKeys = append(mapKeys, key)
1275 }
1276 sort.Strings(mapKeys)
1277
1278 var mapBuf bytes.Buffer
1279 mapBuf.WriteString("{")
1280 for _, key := range mapKeys {
1281 mapBuf.WriteString(fmt.Sprintf("%s:%s ", key, vTyped[key]))
1282 }
1283 mapBuf.WriteString("}")
1284
1285 buf.WriteString(fmt.Sprintf("%s = %s\n", k, mapBuf.String()))
1286 }
1287 }
1288 }
1289
1290 return buf.String()
1291 }
1292
1293 // ResourceStateKey is a structured representation of the key used for the
1294 // ModuleState.Resources mapping
1295 type ResourceStateKey struct {
1296 Name string
1297 Type string
1298 Mode config.ResourceMode
1299 Index int
1300 }
1301
1302 // Equal determines whether two ResourceStateKeys are the same
1303 func (rsk *ResourceStateKey) Equal(other *ResourceStateKey) bool {
1304 if rsk == nil || other == nil {
1305 return false
1306 }
1307 if rsk.Mode != other.Mode {
1308 return false
1309 }
1310 if rsk.Type != other.Type {
1311 return false
1312 }
1313 if rsk.Name != other.Name {
1314 return false
1315 }
1316 if rsk.Index != other.Index {
1317 return false
1318 }
1319 return true
1320 }
1321
1322 func (rsk *ResourceStateKey) String() string {
1323 if rsk == nil {
1324 return ""
1325 }
1326 var prefix string
1327 switch rsk.Mode {
1328 case config.ManagedResourceMode:
1329 prefix = ""
1330 case config.DataResourceMode:
1331 prefix = "data."
1332 default:
1333 panic(fmt.Errorf("unknown resource mode %s", rsk.Mode))
1334 }
1335 if rsk.Index == -1 {
1336 return fmt.Sprintf("%s%s.%s", prefix, rsk.Type, rsk.Name)
1337 }
1338 return fmt.Sprintf("%s%s.%s.%d", prefix, rsk.Type, rsk.Name, rsk.Index)
1339 }
1340
1341 // ParseResourceStateKey accepts a key in the format used by
1342 // ModuleState.Resources and returns a resource name and resource index. In the
1343 // state, a resource has the format "type.name.index" or "type.name". In the
1344 // latter case, the index is returned as -1.
1345 func ParseResourceStateKey(k string) (*ResourceStateKey, error) {
1346 parts := strings.Split(k, ".")
1347 mode := config.ManagedResourceMode
1348 if len(parts) > 0 && parts[0] == "data" {
1349 mode = config.DataResourceMode
1350 // Don't need the constant "data" prefix for parsing
1351 // now that we've figured out the mode.
1352 parts = parts[1:]
1353 }
1354 if len(parts) < 2 || len(parts) > 3 {
1355 return nil, fmt.Errorf("Malformed resource state key: %s", k)
1356 }
1357 rsk := &ResourceStateKey{
1358 Mode: mode,
1359 Type: parts[0],
1360 Name: parts[1],
1361 Index: -1,
1362 }
1363 if len(parts) == 3 {
1364 index, err := strconv.Atoi(parts[2])
1365 if err != nil {
1366 return nil, fmt.Errorf("Malformed resource state key index: %s", k)
1367 }
1368 rsk.Index = index
1369 }
1370 return rsk, nil
1371 }
1372
1373 // ResourceState holds the state of a resource that is used so that
1374 // a provider can find and manage an existing resource as well as for
1375 // storing attributes that are used to populate variables of child
1376 // resources.
1377 //
1378 // Attributes has attributes about the created resource that are
1379 // queryable in interpolation: "${type.id.attr}"
1380 //
1381 // Extra is just extra data that a provider can return that we store
1382 // for later, but is not exposed in any way to the user.
1383 //
1384 type ResourceState struct {
1385 // This is filled in and managed by Terraform, and is the resource
1386 // type itself such as "mycloud_instance". If a resource provider sets
1387 // this value, it won't be persisted.
1388 Type string `json:"type"`
1389
1390 // Dependencies are a list of things that this resource relies on
1391 // existing to remain intact. For example: an AWS instance might
1392 // depend on a subnet (which itself might depend on a VPC, and so
1393 // on).
1394 //
1395 // Terraform uses this information to build valid destruction
1396 // orders and to warn the user if they're destroying a resource that
1397 // another resource depends on.
1398 //
1399 // Things can be put into this list that may not be managed by
1400 // Terraform. If Terraform doesn't find a matching ID in the
1401 // overall state, then it assumes it isn't managed and doesn't
1402 // worry about it.
1403 Dependencies []string `json:"depends_on"`
1404
1405 // Primary is the current active instance for this resource.
1406 // It can be replaced but only after a successful creation.
1407 // This is the instances on which providers will act.
1408 Primary *InstanceState `json:"primary"`
1409
1410 // Deposed is used in the mechanics of CreateBeforeDestroy: the existing
1411 // Primary is Deposed to get it out of the way for the replacement Primary to
1412 // be created by Apply. If the replacement Primary creates successfully, the
1413 // Deposed instance is cleaned up.
1414 //
1415 // If there were problems creating the replacement Primary, the Deposed
1416 // instance and the (now tainted) replacement Primary will be swapped so the
1417 // tainted replacement will be cleaned up instead.
1418 //
1419 // An instance will remain in the Deposed list until it is successfully
1420 // destroyed and purged.
1421 Deposed []*InstanceState `json:"deposed"`
1422
1423 // Provider is used when a resource is connected to a provider with an alias.
1424 // If this string is empty, the resource is connected to the default provider,
1425 // e.g. "aws_instance" goes with the "aws" provider.
1426 // If the resource block contained a "provider" key, that value will be set here.
1427 Provider string `json:"provider"`
1428
1429 mu sync.Mutex
1430 }
1431
1432 func (s *ResourceState) Lock() { s.mu.Lock() }
1433 func (s *ResourceState) Unlock() { s.mu.Unlock() }
1434
1435 // Equal tests whether two ResourceStates are equal.
1436 func (s *ResourceState) Equal(other *ResourceState) bool {
1437 s.Lock()
1438 defer s.Unlock()
1439
1440 if s.Type != other.Type {
1441 return false
1442 }
1443
1444 if s.Provider != other.Provider {
1445 return false
1446 }
1447
1448 // Dependencies must be equal
1449 sort.Strings(s.Dependencies)
1450 sort.Strings(other.Dependencies)
1451 if len(s.Dependencies) != len(other.Dependencies) {
1452 return false
1453 }
1454 for i, d := range s.Dependencies {
1455 if other.Dependencies[i] != d {
1456 return false
1457 }
1458 }
1459
1460 // States must be equal
1461 if !s.Primary.Equal(other.Primary) {
1462 return false
1463 }
1464
1465 return true
1466 }
1467
1468 // Taint marks a resource as tainted.
1469 func (s *ResourceState) Taint() {
1470 s.Lock()
1471 defer s.Unlock()
1472
1473 if s.Primary != nil {
1474 s.Primary.Tainted = true
1475 }
1476 }
1477
1478 // Untaint unmarks a resource as tainted.
1479 func (s *ResourceState) Untaint() {
1480 s.Lock()
1481 defer s.Unlock()
1482
1483 if s.Primary != nil {
1484 s.Primary.Tainted = false
1485 }
1486 }
1487
1488 func (s *ResourceState) init() {
1489 s.Lock()
1490 defer s.Unlock()
1491
1492 if s.Primary == nil {
1493 s.Primary = &InstanceState{}
1494 }
1495 s.Primary.init()
1496
1497 if s.Dependencies == nil {
1498 s.Dependencies = []string{}
1499 }
1500
1501 if s.Deposed == nil {
1502 s.Deposed = make([]*InstanceState, 0)
1503 }
1504 }
1505
1506 func (s *ResourceState) deepcopy() *ResourceState {
1507 copy, err := copystructure.Config{Lock: true}.Copy(s)
1508 if err != nil {
1509 panic(err)
1510 }
1511
1512 return copy.(*ResourceState)
1513 }
1514
1515 // prune is used to remove any instances that are no longer required
1516 func (s *ResourceState) prune() {
1517 s.Lock()
1518 defer s.Unlock()
1519
1520 n := len(s.Deposed)
1521 for i := 0; i < n; i++ {
1522 inst := s.Deposed[i]
1523 if inst == nil || inst.ID == "" {
1524 copy(s.Deposed[i:], s.Deposed[i+1:])
1525 s.Deposed[n-1] = nil
1526 n--
1527 i--
1528 }
1529 }
1530 s.Deposed = s.Deposed[:n]
1531
1532 s.Dependencies = uniqueStrings(s.Dependencies)
1533 }
1534
1535 func (s *ResourceState) sort() {
1536 s.Lock()
1537 defer s.Unlock()
1538
1539 sort.Strings(s.Dependencies)
1540 }
1541
1542 func (s *ResourceState) String() string {
1543 s.Lock()
1544 defer s.Unlock()
1545
1546 var buf bytes.Buffer
1547 buf.WriteString(fmt.Sprintf("Type = %s", s.Type))
1548 return buf.String()
1549 }
1550
1551 // InstanceState is used to track the unique state information belonging
1552 // to a given instance.
1553 type InstanceState struct {
1554 // A unique ID for this resource. This is opaque to Terraform
1555 // and is only meant as a lookup mechanism for the providers.
1556 ID string `json:"id"`
1557
1558 // Attributes are basic information about the resource. Any keys here
1559 // are accessible in variable format within Terraform configurations:
1560 // ${resourcetype.name.attribute}.
1561 Attributes map[string]string `json:"attributes"`
1562
1563 // Ephemeral is used to store any state associated with this instance
1564 // that is necessary for the Terraform run to complete, but is not
1565 // persisted to a state file.
1566 Ephemeral EphemeralState `json:"-"`
1567
1568 // Meta is a simple K/V map that is persisted to the State but otherwise
1569 // ignored by Terraform core. It's meant to be used for accounting by
1570 // external client code. The value here must only contain Go primitives
1571 // and collections.
1572 Meta map[string]interface{} `json:"meta"`
1573
1574 // Tainted is used to mark a resource for recreation.
1575 Tainted bool `json:"tainted"`
1576
1577 mu sync.Mutex
1578 }
1579
1580 func (s *InstanceState) Lock() { s.mu.Lock() }
1581 func (s *InstanceState) Unlock() { s.mu.Unlock() }
1582
1583 func (s *InstanceState) init() {
1584 s.Lock()
1585 defer s.Unlock()
1586
1587 if s.Attributes == nil {
1588 s.Attributes = make(map[string]string)
1589 }
1590 if s.Meta == nil {
1591 s.Meta = make(map[string]interface{})
1592 }
1593 s.Ephemeral.init()
1594 }
1595
1596 // Copy all the Fields from another InstanceState
1597 func (s *InstanceState) Set(from *InstanceState) {
1598 s.Lock()
1599 defer s.Unlock()
1600
1601 from.Lock()
1602 defer from.Unlock()
1603
1604 s.ID = from.ID
1605 s.Attributes = from.Attributes
1606 s.Ephemeral = from.Ephemeral
1607 s.Meta = from.Meta
1608 s.Tainted = from.Tainted
1609 }
1610
1611 func (s *InstanceState) DeepCopy() *InstanceState {
1612 copy, err := copystructure.Config{Lock: true}.Copy(s)
1613 if err != nil {
1614 panic(err)
1615 }
1616
1617 return copy.(*InstanceState)
1618 }
1619
1620 func (s *InstanceState) Empty() bool {
1621 if s == nil {
1622 return true
1623 }
1624 s.Lock()
1625 defer s.Unlock()
1626
1627 return s.ID == ""
1628 }
1629
1630 func (s *InstanceState) Equal(other *InstanceState) bool {
1631 // Short circuit some nil checks
1632 if s == nil || other == nil {
1633 return s == other
1634 }
1635 s.Lock()
1636 defer s.Unlock()
1637
1638 // IDs must be equal
1639 if s.ID != other.ID {
1640 return false
1641 }
1642
1643 // Attributes must be equal
1644 if len(s.Attributes) != len(other.Attributes) {
1645 return false
1646 }
1647 for k, v := range s.Attributes {
1648 otherV, ok := other.Attributes[k]
1649 if !ok {
1650 return false
1651 }
1652
1653 if v != otherV {
1654 return false
1655 }
1656 }
1657
1658 // Meta must be equal
1659 if len(s.Meta) != len(other.Meta) {
1660 return false
1661 }
1662 if s.Meta != nil && other.Meta != nil {
1663 // We only do the deep check if both are non-nil. If one is nil
1664 // we treat it as equal since their lengths are both zero (check
1665 // above).
1666 if !reflect.DeepEqual(s.Meta, other.Meta) {
1667 return false
1668 }
1669 }
1670
1671 if s.Tainted != other.Tainted {
1672 return false
1673 }
1674
1675 return true
1676 }
1677
1678 // MergeDiff takes a ResourceDiff and merges the attributes into
1679 // this resource state in order to generate a new state. This new
1680 // state can be used to provide updated attribute lookups for
1681 // variable interpolation.
1682 //
1683 // If the diff attribute requires computing the value, and hence
1684 // won't be available until apply, the value is replaced with the
1685 // computeID.
1686 func (s *InstanceState) MergeDiff(d *InstanceDiff) *InstanceState {
1687 result := s.DeepCopy()
1688 if result == nil {
1689 result = new(InstanceState)
1690 }
1691 result.init()
1692
1693 if s != nil {
1694 s.Lock()
1695 defer s.Unlock()
1696 for k, v := range s.Attributes {
1697 result.Attributes[k] = v
1698 }
1699 }
1700 if d != nil {
1701 for k, diff := range d.CopyAttributes() {
1702 if diff.NewRemoved {
1703 delete(result.Attributes, k)
1704 continue
1705 }
1706 if diff.NewComputed {
1707 result.Attributes[k] = config.UnknownVariableValue
1708 continue
1709 }
1710
1711 result.Attributes[k] = diff.New
1712 }
1713 }
1714
1715 return result
1716 }
1717
1718 func (s *InstanceState) String() string {
1719 s.Lock()
1720 defer s.Unlock()
1721
1722 var buf bytes.Buffer
1723
1724 if s == nil || s.ID == "" {
1725 return "<not created>"
1726 }
1727
1728 buf.WriteString(fmt.Sprintf("ID = %s\n", s.ID))
1729
1730 attributes := s.Attributes
1731 attrKeys := make([]string, 0, len(attributes))
1732 for ak, _ := range attributes {
1733 if ak == "id" {
1734 continue
1735 }
1736
1737 attrKeys = append(attrKeys, ak)
1738 }
1739 sort.Strings(attrKeys)
1740
1741 for _, ak := range attrKeys {
1742 av := attributes[ak]
1743 buf.WriteString(fmt.Sprintf("%s = %s\n", ak, av))
1744 }
1745
1746 buf.WriteString(fmt.Sprintf("Tainted = %t\n", s.Tainted))
1747
1748 return buf.String()
1749 }
1750
1751 // EphemeralState is used for transient state that is only kept in-memory
1752 type EphemeralState struct {
1753 // ConnInfo is used for the providers to export information which is
1754 // used to connect to the resource for provisioning. For example,
1755 // this could contain SSH or WinRM credentials.
1756 ConnInfo map[string]string `json:"-"`
1757
1758 // Type is used to specify the resource type for this instance. This is only
1759 // required for import operations (as documented). If the documentation
1760 // doesn't state that you need to set this, then don't worry about
1761 // setting it.
1762 Type string `json:"-"`
1763 }
1764
1765 func (e *EphemeralState) init() {
1766 if e.ConnInfo == nil {
1767 e.ConnInfo = make(map[string]string)
1768 }
1769 }
1770
1771 func (e *EphemeralState) DeepCopy() *EphemeralState {
1772 copy, err := copystructure.Config{Lock: true}.Copy(e)
1773 if err != nil {
1774 panic(err)
1775 }
1776
1777 return copy.(*EphemeralState)
1778 }
1779
1780 type jsonStateVersionIdentifier struct {
1781 Version int `json:"version"`
1782 }
1783
1784 // Check if this is a V0 format - the magic bytes at the start of the file
1785 // should be "tfstate" if so. We no longer support upgrading this type of
1786 // state but return an error message explaining to a user how they can
1787 // upgrade via the 0.6.x series.
1788 func testForV0State(buf *bufio.Reader) error {
1789 start, err := buf.Peek(len("tfstate"))
1790 if err != nil {
1791 return fmt.Errorf("Failed to check for magic bytes: %v", err)
1792 }
1793 if string(start) == "tfstate" {
1794 return fmt.Errorf("Terraform 0.7 no longer supports upgrading the binary state\n" +
1795 "format which was used prior to Terraform 0.3. Please upgrade\n" +
1796 "this state file using Terraform 0.6.16 prior to using it with\n" +
1797 "Terraform 0.7.")
1798 }
1799
1800 return nil
1801 }
1802
1803 // ErrNoState is returned by ReadState when the io.Reader contains no data
1804 var ErrNoState = errors.New("no state")
1805
1806 // ReadState reads a state structure out of a reader in the format that
1807 // was written by WriteState.
1808 func ReadState(src io.Reader) (*State, error) {
1809 buf := bufio.NewReader(src)
1810 if _, err := buf.Peek(1); err != nil {
1811 // the error is either io.EOF or "invalid argument", and both are from
1812 // an empty state.
1813 return nil, ErrNoState
1814 }
1815
1816 if err := testForV0State(buf); err != nil {
1817 return nil, err
1818 }
1819
1820 // If we are JSON we buffer the whole thing in memory so we can read it twice.
1821 // This is suboptimal, but will work for now.
1822 jsonBytes, err := ioutil.ReadAll(buf)
1823 if err != nil {
1824 return nil, fmt.Errorf("Reading state file failed: %v", err)
1825 }
1826
1827 versionIdentifier := &jsonStateVersionIdentifier{}
1828 if err := json.Unmarshal(jsonBytes, versionIdentifier); err != nil {
1829 return nil, fmt.Errorf("Decoding state file version failed: %v", err)
1830 }
1831
1832 var result *State
1833 switch versionIdentifier.Version {
1834 case 0:
1835 return nil, fmt.Errorf("State version 0 is not supported as JSON.")
1836 case 1:
1837 v1State, err := ReadStateV1(jsonBytes)
1838 if err != nil {
1839 return nil, err
1840 }
1841
1842 v2State, err := upgradeStateV1ToV2(v1State)
1843 if err != nil {
1844 return nil, err
1845 }
1846
1847 v3State, err := upgradeStateV2ToV3(v2State)
1848 if err != nil {
1849 return nil, err
1850 }
1851
1852 // increment the Serial whenever we upgrade state
1853 v3State.Serial++
1854 result = v3State
1855 case 2:
1856 v2State, err := ReadStateV2(jsonBytes)
1857 if err != nil {
1858 return nil, err
1859 }
1860 v3State, err := upgradeStateV2ToV3(v2State)
1861 if err != nil {
1862 return nil, err
1863 }
1864
1865 v3State.Serial++
1866 result = v3State
1867 case 3:
1868 v3State, err := ReadStateV3(jsonBytes)
1869 if err != nil {
1870 return nil, err
1871 }
1872
1873 result = v3State
1874 default:
1875 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1876 SemVersion.String(), versionIdentifier.Version)
1877 }
1878
1879 // If we reached this place we must have a result set
1880 if result == nil {
1881 panic("resulting state in load not set, assertion failed")
1882 }
1883
1884 // Prune the state when read it. Its possible to write unpruned states or
1885 // for a user to make a state unpruned (nil-ing a module state for example).
1886 result.prune()
1887
1888 // Validate the state file is valid
1889 if err := result.Validate(); err != nil {
1890 return nil, err
1891 }
1892
1893 return result, nil
1894 }
1895
1896 func ReadStateV1(jsonBytes []byte) (*stateV1, error) {
1897 v1State := &stateV1{}
1898 if err := json.Unmarshal(jsonBytes, v1State); err != nil {
1899 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1900 }
1901
1902 if v1State.Version != 1 {
1903 return nil, fmt.Errorf("Decoded state version did not match the decoder selection: "+
1904 "read %d, expected 1", v1State.Version)
1905 }
1906
1907 return v1State, nil
1908 }
1909
1910 func ReadStateV2(jsonBytes []byte) (*State, error) {
1911 state := &State{}
1912 if err := json.Unmarshal(jsonBytes, state); err != nil {
1913 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1914 }
1915
1916 // Check the version, this to ensure we don't read a future
1917 // version that we don't understand
1918 if state.Version > StateVersion {
1919 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1920 SemVersion.String(), state.Version)
1921 }
1922
1923 // Make sure the version is semantic
1924 if state.TFVersion != "" {
1925 if _, err := version.NewVersion(state.TFVersion); err != nil {
1926 return nil, fmt.Errorf(
1927 "State contains invalid version: %s\n\n"+
1928 "Terraform validates the version format prior to writing it. This\n"+
1929 "means that this is invalid of the state becoming corrupted through\n"+
1930 "some external means. Please manually modify the Terraform version\n"+
1931 "field to be a proper semantic version.",
1932 state.TFVersion)
1933 }
1934 }
1935
1936 // catch any unitialized fields in the state
1937 state.init()
1938
1939 // Sort it
1940 state.sort()
1941
1942 return state, nil
1943 }
1944
1945 func ReadStateV3(jsonBytes []byte) (*State, error) {
1946 state := &State{}
1947 if err := json.Unmarshal(jsonBytes, state); err != nil {
1948 return nil, fmt.Errorf("Decoding state file failed: %v", err)
1949 }
1950
1951 // Check the version, this to ensure we don't read a future
1952 // version that we don't understand
1953 if state.Version > StateVersion {
1954 return nil, fmt.Errorf("Terraform %s does not support state version %d, please update.",
1955 SemVersion.String(), state.Version)
1956 }
1957
1958 // Make sure the version is semantic
1959 if state.TFVersion != "" {
1960 if _, err := version.NewVersion(state.TFVersion); err != nil {
1961 return nil, fmt.Errorf(
1962 "State contains invalid version: %s\n\n"+
1963 "Terraform validates the version format prior to writing it. This\n"+
1964 "means that this is invalid of the state becoming corrupted through\n"+
1965 "some external means. Please manually modify the Terraform version\n"+
1966 "field to be a proper semantic version.",
1967 state.TFVersion)
1968 }
1969 }
1970
1971 // catch any unitialized fields in the state
1972 state.init()
1973
1974 // Sort it
1975 state.sort()
1976
1977 // Now we write the state back out to detect any changes in normaliztion.
1978 // If our state is now written out differently, bump the serial number to
1979 // prevent conflicts.
1980 var buf bytes.Buffer
1981 err := WriteState(state, &buf)
1982 if err != nil {
1983 return nil, err
1984 }
1985
1986 if !bytes.Equal(jsonBytes, buf.Bytes()) {
1987 log.Println("[INFO] state modified during read or write. incrementing serial number")
1988 state.Serial++
1989 }
1990
1991 return state, nil
1992 }
1993
1994 // WriteState writes a state somewhere in a binary format.
1995 func WriteState(d *State, dst io.Writer) error {
1996 // writing a nil state is a noop.
1997 if d == nil {
1998 return nil
1999 }
2000
2001 // make sure we have no uninitialized fields
2002 d.init()
2003
2004 // Make sure it is sorted
2005 d.sort()
2006
2007 // Ensure the version is set
2008 d.Version = StateVersion
2009
2010 // If the TFVersion is set, verify it. We used to just set the version
2011 // here, but this isn't safe since it changes the MD5 sum on some remote
2012 // state storage backends such as Atlas. We now leave it be if needed.
2013 if d.TFVersion != "" {
2014 if _, err := version.NewVersion(d.TFVersion); err != nil {
2015 return fmt.Errorf(
2016 "Error writing state, invalid version: %s\n\n"+
2017 "The Terraform version when writing the state must be a semantic\n"+
2018 "version.",
2019 d.TFVersion)
2020 }
2021 }
2022
2023 // Encode the data in a human-friendly way
2024 data, err := json.MarshalIndent(d, "", " ")
2025 if err != nil {
2026 return fmt.Errorf("Failed to encode state: %s", err)
2027 }
2028
2029 // We append a newline to the data because MarshalIndent doesn't
2030 data = append(data, '\n')
2031
2032 // Write the data out to the dst
2033 if _, err := io.Copy(dst, bytes.NewReader(data)); err != nil {
2034 return fmt.Errorf("Failed to write state: %v", err)
2035 }
2036
2037 return nil
2038 }
2039
2040 // resourceNameSort implements the sort.Interface to sort name parts lexically for
2041 // strings and numerically for integer indexes.
2042 type resourceNameSort []string
2043
2044 func (r resourceNameSort) Len() int { return len(r) }
2045 func (r resourceNameSort) Swap(i, j int) { r[i], r[j] = r[j], r[i] }
2046
2047 func (r resourceNameSort) Less(i, j int) bool {
2048 iParts := strings.Split(r[i], ".")
2049 jParts := strings.Split(r[j], ".")
2050
2051 end := len(iParts)
2052 if len(jParts) < end {
2053 end = len(jParts)
2054 }
2055
2056 for idx := 0; idx < end; idx++ {
2057 if iParts[idx] == jParts[idx] {
2058 continue
2059 }
2060
2061 // sort on the first non-matching part
2062 iInt, iIntErr := strconv.Atoi(iParts[idx])
2063 jInt, jIntErr := strconv.Atoi(jParts[idx])
2064
2065 switch {
2066 case iIntErr == nil && jIntErr == nil:
2067 // sort numerically if both parts are integers
2068 return iInt < jInt
2069 case iIntErr == nil:
2070 // numbers sort before strings
2071 return true
2072 case jIntErr == nil:
2073 return false
2074 default:
2075 return iParts[idx] < jParts[idx]
2076 }
2077 }
2078
2079 return r[i] < r[j]
2080 }
2081
2082 // moduleStateSort implements sort.Interface to sort module states
2083 type moduleStateSort []*ModuleState
2084
2085 func (s moduleStateSort) Len() int {
2086 return len(s)
2087 }
2088
2089 func (s moduleStateSort) Less(i, j int) bool {
2090 a := s[i]
2091 b := s[j]
2092
2093 // If either is nil, then the nil one is "less" than
2094 if a == nil || b == nil {
2095 return a == nil
2096 }
2097
2098 // If the lengths are different, then the shorter one always wins
2099 if len(a.Path) != len(b.Path) {
2100 return len(a.Path) < len(b.Path)
2101 }
2102
2103 // Otherwise, compare lexically
2104 return strings.Join(a.Path, ".") < strings.Join(b.Path, ".")
2105 }
2106
2107 func (s moduleStateSort) Swap(i, j int) {
2108 s[i], s[j] = s[j], s[i]
2109 }
2110
2111 const stateValidateErrMultiModule = `
2112 Multiple modules with the same path: %s
2113
2114 This means that there are multiple entries in the "modules" field
2115 in your state file that point to the same module. This will cause Terraform
2116 to behave in unexpected and error prone ways and is invalid. Please back up
2117 and modify your state file manually to resolve this.
2118 `