]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * | |
3 | * Copyright 2014 gRPC authors. | |
4 | * | |
5 | * Licensed under the Apache License, Version 2.0 (the "License"); | |
6 | * you may not use this file except in compliance with the License. | |
7 | * You may obtain a copy of the License at | |
8 | * | |
9 | * http://www.apache.org/licenses/LICENSE-2.0 | |
10 | * | |
11 | * Unless required by applicable law or agreed to in writing, software | |
12 | * distributed under the License is distributed on an "AS IS" BASIS, | |
13 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
14 | * See the License for the specific language governing permissions and | |
15 | * limitations under the License. | |
16 | * | |
17 | */ | |
18 | ||
19 | package transport | |
20 | ||
21 | import ( | |
22 | "fmt" | |
23 | "math" | |
24 | "sync" | |
25 | "sync/atomic" | |
26 | ) | |
27 | ||
28 | // writeQuota is a soft limit on the amount of data a stream can | |
29 | // schedule before some of it is written out. | |
30 | type writeQuota struct { | |
31 | quota int32 | |
32 | // get waits on read from when quota goes less than or equal to zero. | |
33 | // replenish writes on it when quota goes positive again. | |
34 | ch chan struct{} | |
35 | // done is triggered in error case. | |
36 | done <-chan struct{} | |
37 | // replenish is called by loopyWriter to give quota back to. | |
38 | // It is implemented as a field so that it can be updated | |
39 | // by tests. | |
40 | replenish func(n int) | |
41 | } | |
42 | ||
43 | func newWriteQuota(sz int32, done <-chan struct{}) *writeQuota { | |
44 | w := &writeQuota{ | |
45 | quota: sz, | |
46 | ch: make(chan struct{}, 1), | |
47 | done: done, | |
48 | } | |
49 | w.replenish = w.realReplenish | |
50 | return w | |
51 | } | |
52 | ||
53 | func (w *writeQuota) get(sz int32) error { | |
54 | for { | |
55 | if atomic.LoadInt32(&w.quota) > 0 { | |
56 | atomic.AddInt32(&w.quota, -sz) | |
57 | return nil | |
58 | } | |
59 | select { | |
60 | case <-w.ch: | |
61 | continue | |
62 | case <-w.done: | |
63 | return errStreamDone | |
64 | } | |
65 | } | |
66 | } | |
67 | ||
68 | func (w *writeQuota) realReplenish(n int) { | |
69 | sz := int32(n) | |
70 | a := atomic.AddInt32(&w.quota, sz) | |
71 | b := a - sz | |
72 | if b <= 0 && a > 0 { | |
73 | select { | |
74 | case w.ch <- struct{}{}: | |
75 | default: | |
76 | } | |
77 | } | |
78 | } | |
79 | ||
80 | type trInFlow struct { | |
81 | limit uint32 | |
82 | unacked uint32 | |
83 | effectiveWindowSize uint32 | |
84 | } | |
85 | ||
86 | func (f *trInFlow) newLimit(n uint32) uint32 { | |
87 | d := n - f.limit | |
88 | f.limit = n | |
89 | f.updateEffectiveWindowSize() | |
90 | return d | |
91 | } | |
92 | ||
93 | func (f *trInFlow) onData(n uint32) uint32 { | |
94 | f.unacked += n | |
95 | if f.unacked >= f.limit/4 { | |
96 | w := f.unacked | |
97 | f.unacked = 0 | |
98 | f.updateEffectiveWindowSize() | |
99 | return w | |
100 | } | |
101 | f.updateEffectiveWindowSize() | |
102 | return 0 | |
103 | } | |
104 | ||
105 | func (f *trInFlow) reset() uint32 { | |
106 | w := f.unacked | |
107 | f.unacked = 0 | |
108 | f.updateEffectiveWindowSize() | |
109 | return w | |
110 | } | |
111 | ||
112 | func (f *trInFlow) updateEffectiveWindowSize() { | |
113 | atomic.StoreUint32(&f.effectiveWindowSize, f.limit-f.unacked) | |
114 | } | |
115 | ||
116 | func (f *trInFlow) getSize() uint32 { | |
117 | return atomic.LoadUint32(&f.effectiveWindowSize) | |
118 | } | |
119 | ||
120 | // TODO(mmukhi): Simplify this code. | |
121 | // inFlow deals with inbound flow control | |
122 | type inFlow struct { | |
123 | mu sync.Mutex | |
124 | // The inbound flow control limit for pending data. | |
125 | limit uint32 | |
126 | // pendingData is the overall data which have been received but not been | |
127 | // consumed by applications. | |
128 | pendingData uint32 | |
129 | // The amount of data the application has consumed but grpc has not sent | |
130 | // window update for them. Used to reduce window update frequency. | |
131 | pendingUpdate uint32 | |
132 | // delta is the extra window update given by receiver when an application | |
133 | // is reading data bigger in size than the inFlow limit. | |
134 | delta uint32 | |
135 | } | |
136 | ||
137 | // newLimit updates the inflow window to a new value n. | |
138 | // It assumes that n is always greater than the old limit. | |
139 | func (f *inFlow) newLimit(n uint32) uint32 { | |
140 | f.mu.Lock() | |
141 | d := n - f.limit | |
142 | f.limit = n | |
143 | f.mu.Unlock() | |
144 | return d | |
145 | } | |
146 | ||
147 | func (f *inFlow) maybeAdjust(n uint32) uint32 { | |
148 | if n > uint32(math.MaxInt32) { | |
149 | n = uint32(math.MaxInt32) | |
150 | } | |
151 | f.mu.Lock() | |
152 | // estSenderQuota is the receiver's view of the maximum number of bytes the sender | |
153 | // can send without a window update. | |
154 | estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate)) | |
155 | // estUntransmittedData is the maximum number of bytes the sends might not have put | |
156 | // on the wire yet. A value of 0 or less means that we have already received all or | |
157 | // more bytes than the application is requesting to read. | |
158 | estUntransmittedData := int32(n - f.pendingData) // Casting into int32 since it could be negative. | |
159 | // This implies that unless we send a window update, the sender won't be able to send all the bytes | |
160 | // for this message. Therefore we must send an update over the limit since there's an active read | |
161 | // request from the application. | |
162 | if estUntransmittedData > estSenderQuota { | |
163 | // Sender's window shouldn't go more than 2^31 - 1 as specified in the HTTP spec. | |
164 | if f.limit+n > maxWindowSize { | |
165 | f.delta = maxWindowSize - f.limit | |
166 | } else { | |
167 | // Send a window update for the whole message and not just the difference between | |
168 | // estUntransmittedData and estSenderQuota. This will be helpful in case the message | |
169 | // is padded; We will fallback on the current available window(at least a 1/4th of the limit). | |
170 | f.delta = n | |
171 | } | |
172 | f.mu.Unlock() | |
173 | return f.delta | |
174 | } | |
175 | f.mu.Unlock() | |
176 | return 0 | |
177 | } | |
178 | ||
179 | // onData is invoked when some data frame is received. It updates pendingData. | |
180 | func (f *inFlow) onData(n uint32) error { | |
181 | f.mu.Lock() | |
182 | f.pendingData += n | |
183 | if f.pendingData+f.pendingUpdate > f.limit+f.delta { | |
184 | limit := f.limit | |
185 | rcvd := f.pendingData + f.pendingUpdate | |
186 | f.mu.Unlock() | |
187 | return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", rcvd, limit) | |
188 | } | |
189 | f.mu.Unlock() | |
190 | return nil | |
191 | } | |
192 | ||
193 | // onRead is invoked when the application reads the data. It returns the window size | |
194 | // to be sent to the peer. | |
195 | func (f *inFlow) onRead(n uint32) uint32 { | |
196 | f.mu.Lock() | |
197 | if f.pendingData == 0 { | |
198 | f.mu.Unlock() | |
199 | return 0 | |
200 | } | |
201 | f.pendingData -= n | |
202 | if n > f.delta { | |
203 | n -= f.delta | |
204 | f.delta = 0 | |
205 | } else { | |
206 | f.delta -= n | |
207 | n = 0 | |
208 | } | |
209 | f.pendingUpdate += n | |
210 | if f.pendingUpdate >= f.limit/4 { | |
211 | wu := f.pendingUpdate | |
212 | f.pendingUpdate = 0 | |
213 | f.mu.Unlock() | |
214 | return wu | |
215 | } | |
216 | f.mu.Unlock() | |
217 | return 0 | |
218 | } |