]> git.immae.eu Git - github/fretlink/terraform-provider-statuscake.git/blame - vendor/golang.org/x/sys/unix/syscall_linux.go
Merge branch 'fix_read_test' of github.com:alexandreFre/terraform-provider-statuscake
[github/fretlink/terraform-provider-statuscake.git] / vendor / golang.org / x / sys / unix / syscall_linux.go
CommitLineData
15c0b25d
AP
1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
107c1cdb
ND
15 "encoding/binary"
16 "net"
17 "runtime"
15c0b25d
AP
18 "syscall"
19 "unsafe"
20)
21
22/*
23 * Wrapped
24 */
25
26func Access(path string, mode uint32) (err error) {
27 return Faccessat(AT_FDCWD, path, mode, 0)
28}
29
30func Chmod(path string, mode uint32) (err error) {
31 return Fchmodat(AT_FDCWD, path, mode, 0)
32}
33
34func Chown(path string, uid int, gid int) (err error) {
35 return Fchownat(AT_FDCWD, path, uid, gid, 0)
36}
37
38func Creat(path string, mode uint32) (fd int, err error) {
39 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
40}
41
107c1cdb
ND
42//sys FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
43//sys fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
44
45func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
46 if pathname == "" {
47 return fanotifyMark(fd, flags, mask, dirFd, nil)
48 }
49 p, err := BytePtrFromString(pathname)
50 if err != nil {
51 return err
52 }
53 return fanotifyMark(fd, flags, mask, dirFd, p)
54}
55
15c0b25d
AP
56//sys fchmodat(dirfd int, path string, mode uint32) (err error)
57
58func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
59 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
60 // and check the flags. Otherwise the mode would be applied to the symlink
61 // destination which is not what the user expects.
62 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
63 return EINVAL
64 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
65 return EOPNOTSUPP
66 }
67 return fchmodat(dirfd, path, mode)
68}
69
70//sys ioctl(fd int, req uint, arg uintptr) (err error)
71
72// ioctl itself should not be exposed directly, but additional get/set
73// functions for specific types are permissible.
74
107c1cdb
ND
75// IoctlSetPointerInt performs an ioctl operation which sets an
76// integer value on fd, using the specified request number. The ioctl
77// argument is called with a pointer to the integer value, rather than
78// passing the integer value directly.
79func IoctlSetPointerInt(fd int, req uint, value int) error {
80 v := int32(value)
81 return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
82}
83
15c0b25d
AP
84// IoctlSetInt performs an ioctl operation which sets an integer value
85// on fd, using the specified request number.
86func IoctlSetInt(fd int, req uint, value int) error {
87 return ioctl(fd, req, uintptr(value))
88}
89
90func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
91 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
92}
93
94func ioctlSetTermios(fd int, req uint, value *Termios) error {
95 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
96}
97
107c1cdb
ND
98func IoctlSetRTCTime(fd int, value *RTCTime) error {
99 err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
100 runtime.KeepAlive(value)
101 return err
102}
103
15c0b25d
AP
104// IoctlGetInt performs an ioctl operation which gets an integer value
105// from fd, using the specified request number.
106func IoctlGetInt(fd int, req uint) (int, error) {
107 var value int
108 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
109 return value, err
110}
111
112func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
113 var value Winsize
114 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
115 return &value, err
116}
117
118func IoctlGetTermios(fd int, req uint) (*Termios, error) {
119 var value Termios
120 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
121 return &value, err
122}
123
107c1cdb
ND
124func IoctlGetRTCTime(fd int) (*RTCTime, error) {
125 var value RTCTime
126 err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
127 return &value, err
128}
129
15c0b25d
AP
130//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
131
132func Link(oldpath string, newpath string) (err error) {
133 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
134}
135
136func Mkdir(path string, mode uint32) (err error) {
137 return Mkdirat(AT_FDCWD, path, mode)
138}
139
140func Mknod(path string, mode uint32, dev int) (err error) {
141 return Mknodat(AT_FDCWD, path, mode, dev)
142}
143
144func Open(path string, mode int, perm uint32) (fd int, err error) {
145 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
146}
147
148//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
149
150func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
151 return openat(dirfd, path, flags|O_LARGEFILE, mode)
152}
153
154//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
155
156func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
157 if len(fds) == 0 {
158 return ppoll(nil, 0, timeout, sigmask)
159 }
160 return ppoll(&fds[0], len(fds), timeout, sigmask)
161}
162
163//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
164
165func Readlink(path string, buf []byte) (n int, err error) {
166 return Readlinkat(AT_FDCWD, path, buf)
167}
168
169func Rename(oldpath string, newpath string) (err error) {
170 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
171}
172
173func Rmdir(path string) error {
174 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
175}
176
177//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
178
179func Symlink(oldpath string, newpath string) (err error) {
180 return Symlinkat(oldpath, AT_FDCWD, newpath)
181}
182
183func Unlink(path string) error {
184 return Unlinkat(AT_FDCWD, path, 0)
185}
186
187//sys Unlinkat(dirfd int, path string, flags int) (err error)
188
189func Utimes(path string, tv []Timeval) error {
190 if tv == nil {
191 err := utimensat(AT_FDCWD, path, nil, 0)
192 if err != ENOSYS {
193 return err
194 }
195 return utimes(path, nil)
196 }
197 if len(tv) != 2 {
198 return EINVAL
199 }
200 var ts [2]Timespec
201 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
202 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
203 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
204 if err != ENOSYS {
205 return err
206 }
207 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
208}
209
210//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
211
212func UtimesNano(path string, ts []Timespec) error {
213 if ts == nil {
214 err := utimensat(AT_FDCWD, path, nil, 0)
215 if err != ENOSYS {
216 return err
217 }
218 return utimes(path, nil)
219 }
220 if len(ts) != 2 {
221 return EINVAL
222 }
223 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
224 if err != ENOSYS {
225 return err
226 }
227 // If the utimensat syscall isn't available (utimensat was added to Linux
228 // in 2.6.22, Released, 8 July 2007) then fall back to utimes
229 var tv [2]Timeval
230 for i := 0; i < 2; i++ {
231 tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
232 }
233 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
234}
235
236func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
237 if ts == nil {
238 return utimensat(dirfd, path, nil, flags)
239 }
240 if len(ts) != 2 {
241 return EINVAL
242 }
243 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
244}
245
246func Futimesat(dirfd int, path string, tv []Timeval) error {
247 if tv == nil {
248 return futimesat(dirfd, path, nil)
249 }
250 if len(tv) != 2 {
251 return EINVAL
252 }
253 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
254}
255
256func Futimes(fd int, tv []Timeval) (err error) {
257 // Believe it or not, this is the best we can do on Linux
258 // (and is what glibc does).
259 return Utimes("/proc/self/fd/"+itoa(fd), tv)
260}
261
262const ImplementsGetwd = true
263
264//sys Getcwd(buf []byte) (n int, err error)
265
266func Getwd() (wd string, err error) {
267 var buf [PathMax]byte
268 n, err := Getcwd(buf[0:])
269 if err != nil {
270 return "", err
271 }
272 // Getcwd returns the number of bytes written to buf, including the NUL.
273 if n < 1 || n > len(buf) || buf[n-1] != 0 {
274 return "", EINVAL
275 }
276 return string(buf[0 : n-1]), nil
277}
278
279func Getgroups() (gids []int, err error) {
280 n, err := getgroups(0, nil)
281 if err != nil {
282 return nil, err
283 }
284 if n == 0 {
285 return nil, nil
286 }
287
288 // Sanity check group count. Max is 1<<16 on Linux.
289 if n < 0 || n > 1<<20 {
290 return nil, EINVAL
291 }
292
293 a := make([]_Gid_t, n)
294 n, err = getgroups(n, &a[0])
295 if err != nil {
296 return nil, err
297 }
298 gids = make([]int, n)
299 for i, v := range a[0:n] {
300 gids[i] = int(v)
301 }
302 return
303}
304
305func Setgroups(gids []int) (err error) {
306 if len(gids) == 0 {
307 return setgroups(0, nil)
308 }
309
310 a := make([]_Gid_t, len(gids))
311 for i, v := range gids {
312 a[i] = _Gid_t(v)
313 }
314 return setgroups(len(a), &a[0])
315}
316
317type WaitStatus uint32
318
319// Wait status is 7 bits at bottom, either 0 (exited),
320// 0x7F (stopped), or a signal number that caused an exit.
321// The 0x80 bit is whether there was a core dump.
322// An extra number (exit code, signal causing a stop)
323// is in the high bits. At least that's the idea.
324// There are various irregularities. For example, the
325// "continued" status is 0xFFFF, distinguishing itself
326// from stopped via the core dump bit.
327
328const (
329 mask = 0x7F
330 core = 0x80
331 exited = 0x00
332 stopped = 0x7F
333 shift = 8
334)
335
336func (w WaitStatus) Exited() bool { return w&mask == exited }
337
338func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
339
340func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
341
342func (w WaitStatus) Continued() bool { return w == 0xFFFF }
343
344func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
345
346func (w WaitStatus) ExitStatus() int {
347 if !w.Exited() {
348 return -1
349 }
350 return int(w>>shift) & 0xFF
351}
352
353func (w WaitStatus) Signal() syscall.Signal {
354 if !w.Signaled() {
355 return -1
356 }
357 return syscall.Signal(w & mask)
358}
359
360func (w WaitStatus) StopSignal() syscall.Signal {
361 if !w.Stopped() {
362 return -1
363 }
364 return syscall.Signal(w>>shift) & 0xFF
365}
366
367func (w WaitStatus) TrapCause() int {
368 if w.StopSignal() != SIGTRAP {
369 return -1
370 }
371 return int(w>>shift) >> 8
372}
373
374//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
375
376func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
377 var status _C_int
378 wpid, err = wait4(pid, &status, options, rusage)
379 if wstatus != nil {
380 *wstatus = WaitStatus(status)
381 }
382 return
383}
384
385func Mkfifo(path string, mode uint32) error {
386 return Mknod(path, mode|S_IFIFO, 0)
387}
388
389func Mkfifoat(dirfd int, path string, mode uint32) error {
390 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
391}
392
393func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
394 if sa.Port < 0 || sa.Port > 0xFFFF {
395 return nil, 0, EINVAL
396 }
397 sa.raw.Family = AF_INET
398 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
399 p[0] = byte(sa.Port >> 8)
400 p[1] = byte(sa.Port)
401 for i := 0; i < len(sa.Addr); i++ {
402 sa.raw.Addr[i] = sa.Addr[i]
403 }
404 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
405}
406
407func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
408 if sa.Port < 0 || sa.Port > 0xFFFF {
409 return nil, 0, EINVAL
410 }
411 sa.raw.Family = AF_INET6
412 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
413 p[0] = byte(sa.Port >> 8)
414 p[1] = byte(sa.Port)
415 sa.raw.Scope_id = sa.ZoneId
416 for i := 0; i < len(sa.Addr); i++ {
417 sa.raw.Addr[i] = sa.Addr[i]
418 }
419 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
420}
421
422func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
423 name := sa.Name
424 n := len(name)
425 if n >= len(sa.raw.Path) {
426 return nil, 0, EINVAL
427 }
428 sa.raw.Family = AF_UNIX
429 for i := 0; i < n; i++ {
430 sa.raw.Path[i] = int8(name[i])
431 }
432 // length is family (uint16), name, NUL.
433 sl := _Socklen(2)
434 if n > 0 {
435 sl += _Socklen(n) + 1
436 }
437 if sa.raw.Path[0] == '@' {
438 sa.raw.Path[0] = 0
439 // Don't count trailing NUL for abstract address.
440 sl--
441 }
442
443 return unsafe.Pointer(&sa.raw), sl, nil
444}
445
446// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
447type SockaddrLinklayer struct {
448 Protocol uint16
449 Ifindex int
450 Hatype uint16
451 Pkttype uint8
452 Halen uint8
453 Addr [8]byte
454 raw RawSockaddrLinklayer
455}
456
457func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
458 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
459 return nil, 0, EINVAL
460 }
461 sa.raw.Family = AF_PACKET
462 sa.raw.Protocol = sa.Protocol
463 sa.raw.Ifindex = int32(sa.Ifindex)
464 sa.raw.Hatype = sa.Hatype
465 sa.raw.Pkttype = sa.Pkttype
466 sa.raw.Halen = sa.Halen
467 for i := 0; i < len(sa.Addr); i++ {
468 sa.raw.Addr[i] = sa.Addr[i]
469 }
470 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
471}
472
473// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
474type SockaddrNetlink struct {
475 Family uint16
476 Pad uint16
477 Pid uint32
478 Groups uint32
479 raw RawSockaddrNetlink
480}
481
482func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
483 sa.raw.Family = AF_NETLINK
484 sa.raw.Pad = sa.Pad
485 sa.raw.Pid = sa.Pid
486 sa.raw.Groups = sa.Groups
487 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
488}
489
490// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
491// using the HCI protocol.
492type SockaddrHCI struct {
493 Dev uint16
494 Channel uint16
495 raw RawSockaddrHCI
496}
497
498func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
499 sa.raw.Family = AF_BLUETOOTH
500 sa.raw.Dev = sa.Dev
501 sa.raw.Channel = sa.Channel
502 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
503}
504
505// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
506// using the L2CAP protocol.
507type SockaddrL2 struct {
508 PSM uint16
509 CID uint16
510 Addr [6]uint8
511 AddrType uint8
512 raw RawSockaddrL2
513}
514
515func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
516 sa.raw.Family = AF_BLUETOOTH
517 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
518 psm[0] = byte(sa.PSM)
519 psm[1] = byte(sa.PSM >> 8)
520 for i := 0; i < len(sa.Addr); i++ {
521 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
522 }
523 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
524 cid[0] = byte(sa.CID)
525 cid[1] = byte(sa.CID >> 8)
526 sa.raw.Bdaddr_type = sa.AddrType
527 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
528}
529
530// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
531// using the RFCOMM protocol.
532//
533// Server example:
534//
535// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
536// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
537// Channel: 1,
538// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
539// })
540// _ = Listen(fd, 1)
541// nfd, sa, _ := Accept(fd)
542// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
543// Read(nfd, buf)
544//
545// Client example:
546//
547// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
548// _ = Connect(fd, &SockaddrRFCOMM{
549// Channel: 1,
550// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
551// })
552// Write(fd, []byte(`hello`))
553type SockaddrRFCOMM struct {
554 // Addr represents a bluetooth address, byte ordering is little-endian.
555 Addr [6]uint8
556
557 // Channel is a designated bluetooth channel, only 1-30 are available for use.
558 // Since Linux 2.6.7 and further zero value is the first available channel.
559 Channel uint8
560
561 raw RawSockaddrRFCOMM
562}
563
564func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
565 sa.raw.Family = AF_BLUETOOTH
566 sa.raw.Channel = sa.Channel
567 sa.raw.Bdaddr = sa.Addr
568 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
569}
570
571// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
572// The RxID and TxID fields are used for transport protocol addressing in
573// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
574// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
575//
576// The SockaddrCAN struct must be bound to the socket file descriptor
577// using Bind before the CAN socket can be used.
578//
579// // Read one raw CAN frame
580// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
581// addr := &SockaddrCAN{Ifindex: index}
582// Bind(fd, addr)
583// frame := make([]byte, 16)
584// Read(fd, frame)
585//
586// The full SocketCAN documentation can be found in the linux kernel
587// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
588type SockaddrCAN struct {
589 Ifindex int
590 RxID uint32
591 TxID uint32
592 raw RawSockaddrCAN
593}
594
595func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
596 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
597 return nil, 0, EINVAL
598 }
599 sa.raw.Family = AF_CAN
600 sa.raw.Ifindex = int32(sa.Ifindex)
601 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
602 for i := 0; i < 4; i++ {
603 sa.raw.Addr[i] = rx[i]
604 }
605 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
606 for i := 0; i < 4; i++ {
607 sa.raw.Addr[i+4] = tx[i]
608 }
609 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
610}
611
612// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
613// SockaddrALG enables userspace access to the Linux kernel's cryptography
614// subsystem. The Type and Name fields specify which type of hash or cipher
615// should be used with a given socket.
616//
617// To create a file descriptor that provides access to a hash or cipher, both
618// Bind and Accept must be used. Once the setup process is complete, input
619// data can be written to the socket, processed by the kernel, and then read
620// back as hash output or ciphertext.
621//
622// Here is an example of using an AF_ALG socket with SHA1 hashing.
623// The initial socket setup process is as follows:
624//
625// // Open a socket to perform SHA1 hashing.
626// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
627// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
628// unix.Bind(fd, addr)
629// // Note: unix.Accept does not work at this time; must invoke accept()
630// // manually using unix.Syscall.
631// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
632//
633// Once a file descriptor has been returned from Accept, it may be used to
634// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
635// may be re-used repeatedly with subsequent Write and Read operations.
636//
637// When hashing a small byte slice or string, a single Write and Read may
638// be used:
639//
640// // Assume hashfd is already configured using the setup process.
641// hash := os.NewFile(hashfd, "sha1")
642// // Hash an input string and read the results. Each Write discards
643// // previous hash state. Read always reads the current state.
644// b := make([]byte, 20)
645// for i := 0; i < 2; i++ {
646// io.WriteString(hash, "Hello, world.")
647// hash.Read(b)
648// fmt.Println(hex.EncodeToString(b))
649// }
650// // Output:
651// // 2ae01472317d1935a84797ec1983ae243fc6aa28
652// // 2ae01472317d1935a84797ec1983ae243fc6aa28
653//
654// For hashing larger byte slices, or byte streams such as those read from
655// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
656// the hash digest instead of creating a new one for a given chunk and finalizing it.
657//
658// // Assume hashfd and addr are already configured using the setup process.
659// hash := os.NewFile(hashfd, "sha1")
660// // Hash the contents of a file.
661// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
662// b := make([]byte, 4096)
663// for {
664// n, err := f.Read(b)
665// if err == io.EOF {
666// break
667// }
668// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
669// }
670// hash.Read(b)
671// fmt.Println(hex.EncodeToString(b))
672// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
673//
674// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
675type SockaddrALG struct {
676 Type string
677 Name string
678 Feature uint32
679 Mask uint32
680 raw RawSockaddrALG
681}
682
683func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
684 // Leave room for NUL byte terminator.
685 if len(sa.Type) > 13 {
686 return nil, 0, EINVAL
687 }
688 if len(sa.Name) > 63 {
689 return nil, 0, EINVAL
690 }
691
692 sa.raw.Family = AF_ALG
693 sa.raw.Feat = sa.Feature
694 sa.raw.Mask = sa.Mask
695
696 typ, err := ByteSliceFromString(sa.Type)
697 if err != nil {
698 return nil, 0, err
699 }
700 name, err := ByteSliceFromString(sa.Name)
701 if err != nil {
702 return nil, 0, err
703 }
704
705 copy(sa.raw.Type[:], typ)
706 copy(sa.raw.Name[:], name)
707
708 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
709}
710
711// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
712// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
713// bidirectional communication between a hypervisor and its guest virtual
714// machines.
715type SockaddrVM struct {
716 // CID and Port specify a context ID and port address for a VM socket.
717 // Guests have a unique CID, and hosts may have a well-known CID of:
718 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
719 // - VMADDR_CID_HOST: refers to other processes on the host.
720 CID uint32
721 Port uint32
722 raw RawSockaddrVM
723}
724
725func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
726 sa.raw.Family = AF_VSOCK
727 sa.raw.Port = sa.Port
728 sa.raw.Cid = sa.CID
729
730 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
731}
732
733type SockaddrXDP struct {
734 Flags uint16
735 Ifindex uint32
736 QueueID uint32
737 SharedUmemFD uint32
738 raw RawSockaddrXDP
739}
740
741func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
742 sa.raw.Family = AF_XDP
743 sa.raw.Flags = sa.Flags
744 sa.raw.Ifindex = sa.Ifindex
745 sa.raw.Queue_id = sa.QueueID
746 sa.raw.Shared_umem_fd = sa.SharedUmemFD
747
748 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
749}
750
107c1cdb
ND
751// This constant mirrors the #define of PX_PROTO_OE in
752// linux/if_pppox.h. We're defining this by hand here instead of
753// autogenerating through mkerrors.sh because including
754// linux/if_pppox.h causes some declaration conflicts with other
755// includes (linux/if_pppox.h includes linux/in.h, which conflicts
756// with netinet/in.h). Given that we only need a single zero constant
757// out of that file, it's cleaner to just define it by hand here.
758const px_proto_oe = 0
759
760type SockaddrPPPoE struct {
761 SID uint16
762 Remote net.HardwareAddr
763 Dev string
764 raw RawSockaddrPPPoX
765}
766
767func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
768 if len(sa.Remote) != 6 {
769 return nil, 0, EINVAL
770 }
771 if len(sa.Dev) > IFNAMSIZ-1 {
772 return nil, 0, EINVAL
773 }
774
775 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
776 // This next field is in host-endian byte order. We can't use the
777 // same unsafe pointer cast as above, because this value is not
778 // 32-bit aligned and some architectures don't allow unaligned
779 // access.
780 //
781 // However, the value of px_proto_oe is 0, so we can use
782 // encoding/binary helpers to write the bytes without worrying
783 // about the ordering.
784 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
785 // This field is deliberately big-endian, unlike the previous
786 // one. The kernel expects SID to be in network byte order.
787 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
788 copy(sa.raw[8:14], sa.Remote)
789 for i := 14; i < 14+IFNAMSIZ; i++ {
790 sa.raw[i] = 0
791 }
792 copy(sa.raw[14:], sa.Dev)
793 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
794}
795
15c0b25d
AP
796func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
797 switch rsa.Addr.Family {
798 case AF_NETLINK:
799 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
800 sa := new(SockaddrNetlink)
801 sa.Family = pp.Family
802 sa.Pad = pp.Pad
803 sa.Pid = pp.Pid
804 sa.Groups = pp.Groups
805 return sa, nil
806
807 case AF_PACKET:
808 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
809 sa := new(SockaddrLinklayer)
810 sa.Protocol = pp.Protocol
811 sa.Ifindex = int(pp.Ifindex)
812 sa.Hatype = pp.Hatype
813 sa.Pkttype = pp.Pkttype
814 sa.Halen = pp.Halen
815 for i := 0; i < len(sa.Addr); i++ {
816 sa.Addr[i] = pp.Addr[i]
817 }
818 return sa, nil
819
820 case AF_UNIX:
821 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
822 sa := new(SockaddrUnix)
823 if pp.Path[0] == 0 {
824 // "Abstract" Unix domain socket.
825 // Rewrite leading NUL as @ for textual display.
826 // (This is the standard convention.)
827 // Not friendly to overwrite in place,
828 // but the callers below don't care.
829 pp.Path[0] = '@'
830 }
831
832 // Assume path ends at NUL.
833 // This is not technically the Linux semantics for
834 // abstract Unix domain sockets--they are supposed
835 // to be uninterpreted fixed-size binary blobs--but
836 // everyone uses this convention.
837 n := 0
838 for n < len(pp.Path) && pp.Path[n] != 0 {
839 n++
840 }
841 bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
842 sa.Name = string(bytes)
843 return sa, nil
844
845 case AF_INET:
846 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
847 sa := new(SockaddrInet4)
848 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
849 sa.Port = int(p[0])<<8 + int(p[1])
850 for i := 0; i < len(sa.Addr); i++ {
851 sa.Addr[i] = pp.Addr[i]
852 }
853 return sa, nil
854
855 case AF_INET6:
856 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
857 sa := new(SockaddrInet6)
858 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
859 sa.Port = int(p[0])<<8 + int(p[1])
860 sa.ZoneId = pp.Scope_id
861 for i := 0; i < len(sa.Addr); i++ {
862 sa.Addr[i] = pp.Addr[i]
863 }
864 return sa, nil
865
866 case AF_VSOCK:
867 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
868 sa := &SockaddrVM{
869 CID: pp.Cid,
870 Port: pp.Port,
871 }
872 return sa, nil
873 case AF_BLUETOOTH:
874 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
875 if err != nil {
876 return nil, err
877 }
878 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
879 switch proto {
880 case BTPROTO_L2CAP:
881 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
882 sa := &SockaddrL2{
883 PSM: pp.Psm,
884 CID: pp.Cid,
885 Addr: pp.Bdaddr,
886 AddrType: pp.Bdaddr_type,
887 }
888 return sa, nil
889 case BTPROTO_RFCOMM:
890 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
891 sa := &SockaddrRFCOMM{
892 Channel: pp.Channel,
893 Addr: pp.Bdaddr,
894 }
895 return sa, nil
896 }
897 case AF_XDP:
898 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
899 sa := &SockaddrXDP{
900 Flags: pp.Flags,
901 Ifindex: pp.Ifindex,
902 QueueID: pp.Queue_id,
903 SharedUmemFD: pp.Shared_umem_fd,
904 }
905 return sa, nil
107c1cdb
ND
906 case AF_PPPOX:
907 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
908 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
909 return nil, EINVAL
910 }
911 sa := &SockaddrPPPoE{
912 SID: binary.BigEndian.Uint16(pp[6:8]),
913 Remote: net.HardwareAddr(pp[8:14]),
914 }
915 for i := 14; i < 14+IFNAMSIZ; i++ {
916 if pp[i] == 0 {
917 sa.Dev = string(pp[14:i])
918 break
919 }
920 }
921 return sa, nil
15c0b25d
AP
922 }
923 return nil, EAFNOSUPPORT
924}
925
926func Accept(fd int) (nfd int, sa Sockaddr, err error) {
927 var rsa RawSockaddrAny
928 var len _Socklen = SizeofSockaddrAny
929 nfd, err = accept(fd, &rsa, &len)
930 if err != nil {
931 return
932 }
933 sa, err = anyToSockaddr(fd, &rsa)
934 if err != nil {
935 Close(nfd)
936 nfd = 0
937 }
938 return
939}
940
941func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
942 var rsa RawSockaddrAny
943 var len _Socklen = SizeofSockaddrAny
944 nfd, err = accept4(fd, &rsa, &len, flags)
945 if err != nil {
946 return
947 }
948 if len > SizeofSockaddrAny {
949 panic("RawSockaddrAny too small")
950 }
951 sa, err = anyToSockaddr(fd, &rsa)
952 if err != nil {
953 Close(nfd)
954 nfd = 0
955 }
956 return
957}
958
959func Getsockname(fd int) (sa Sockaddr, err error) {
960 var rsa RawSockaddrAny
961 var len _Socklen = SizeofSockaddrAny
962 if err = getsockname(fd, &rsa, &len); err != nil {
963 return
964 }
965 return anyToSockaddr(fd, &rsa)
966}
967
968func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
969 var value IPMreqn
970 vallen := _Socklen(SizeofIPMreqn)
971 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
972 return &value, err
973}
974
975func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
976 var value Ucred
977 vallen := _Socklen(SizeofUcred)
978 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
979 return &value, err
980}
981
982func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
983 var value TCPInfo
984 vallen := _Socklen(SizeofTCPInfo)
985 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
986 return &value, err
987}
988
989// GetsockoptString returns the string value of the socket option opt for the
990// socket associated with fd at the given socket level.
991func GetsockoptString(fd, level, opt int) (string, error) {
992 buf := make([]byte, 256)
993 vallen := _Socklen(len(buf))
994 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
995 if err != nil {
996 if err == ERANGE {
997 buf = make([]byte, vallen)
998 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
999 }
1000 if err != nil {
1001 return "", err
1002 }
1003 }
1004 return string(buf[:vallen-1]), nil
1005}
1006
107c1cdb
ND
1007func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1008 var value TpacketStats
1009 vallen := _Socklen(SizeofTpacketStats)
1010 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1011 return &value, err
1012}
1013
1014func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1015 var value TpacketStatsV3
1016 vallen := _Socklen(SizeofTpacketStatsV3)
1017 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1018 return &value, err
1019}
1020
15c0b25d
AP
1021func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1022 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1023}
1024
107c1cdb
ND
1025func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1026 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1027}
1028
1029// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1030// socket to filter incoming packets. See 'man 7 socket' for usage information.
1031func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1032 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1033}
1034
1035func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1036 var p unsafe.Pointer
1037 if len(filter) > 0 {
1038 p = unsafe.Pointer(&filter[0])
1039 }
1040 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1041}
1042
1043func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1044 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1045}
1046
1047func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1048 return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1049}
1050
15c0b25d
AP
1051// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1052
1053// KeyctlInt calls keyctl commands in which each argument is an int.
1054// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1055// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1056// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1057// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1058//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1059
1060// KeyctlBuffer calls keyctl commands in which the third and fourth
1061// arguments are a buffer and its length, respectively.
1062// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1063//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1064
1065// KeyctlString calls keyctl commands which return a string.
1066// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1067func KeyctlString(cmd int, id int) (string, error) {
1068 // We must loop as the string data may change in between the syscalls.
1069 // We could allocate a large buffer here to reduce the chance that the
1070 // syscall needs to be called twice; however, this is unnecessary as
1071 // the performance loss is negligible.
1072 var buffer []byte
1073 for {
1074 // Try to fill the buffer with data
1075 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1076 if err != nil {
1077 return "", err
1078 }
1079
1080 // Check if the data was written
1081 if length <= len(buffer) {
1082 // Exclude the null terminator
1083 return string(buffer[:length-1]), nil
1084 }
1085
1086 // Make a bigger buffer if needed
1087 buffer = make([]byte, length)
1088 }
1089}
1090
1091// Keyctl commands with special signatures.
1092
1093// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1094// See the full documentation at:
1095// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1096func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1097 createInt := 0
1098 if create {
1099 createInt = 1
1100 }
1101 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1102}
1103
1104// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1105// key handle permission mask as described in the "keyctl setperm" section of
1106// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1107// See the full documentation at:
1108// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1109func KeyctlSetperm(id int, perm uint32) error {
1110 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1111 return err
1112}
1113
1114//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1115
1116// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1117// See the full documentation at:
1118// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1119func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1120 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1121}
1122
1123//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1124
1125// KeyctlSearch implements the KEYCTL_SEARCH command.
1126// See the full documentation at:
1127// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1128func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1129 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1130}
1131
1132//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1133
1134// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1135// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1136// of Iovec (each of which represents a buffer) instead of a single buffer.
1137// See the full documentation at:
1138// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1139func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1140 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1141}
1142
1143//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1144
1145// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1146// computes a Diffie-Hellman shared secret based on the provide params. The
1147// secret is written to the provided buffer and the returned size is the number
1148// of bytes written (returning an error if there is insufficient space in the
1149// buffer). If a nil buffer is passed in, this function returns the minimum
1150// buffer length needed to store the appropriate data. Note that this differs
1151// from KEYCTL_READ's behavior which always returns the requested payload size.
1152// See the full documentation at:
1153// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1154func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1155 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1156}
1157
1158func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1159 var msg Msghdr
1160 var rsa RawSockaddrAny
1161 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1162 msg.Namelen = uint32(SizeofSockaddrAny)
1163 var iov Iovec
1164 if len(p) > 0 {
1165 iov.Base = &p[0]
1166 iov.SetLen(len(p))
1167 }
1168 var dummy byte
1169 if len(oob) > 0 {
1170 if len(p) == 0 {
1171 var sockType int
1172 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1173 if err != nil {
1174 return
1175 }
1176 // receive at least one normal byte
1177 if sockType != SOCK_DGRAM {
1178 iov.Base = &dummy
1179 iov.SetLen(1)
1180 }
1181 }
1182 msg.Control = &oob[0]
1183 msg.SetControllen(len(oob))
1184 }
1185 msg.Iov = &iov
1186 msg.Iovlen = 1
1187 if n, err = recvmsg(fd, &msg, flags); err != nil {
1188 return
1189 }
1190 oobn = int(msg.Controllen)
1191 recvflags = int(msg.Flags)
1192 // source address is only specified if the socket is unconnected
1193 if rsa.Addr.Family != AF_UNSPEC {
1194 from, err = anyToSockaddr(fd, &rsa)
1195 }
1196 return
1197}
1198
1199func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1200 _, err = SendmsgN(fd, p, oob, to, flags)
1201 return
1202}
1203
1204func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1205 var ptr unsafe.Pointer
1206 var salen _Socklen
1207 if to != nil {
1208 var err error
1209 ptr, salen, err = to.sockaddr()
1210 if err != nil {
1211 return 0, err
1212 }
1213 }
1214 var msg Msghdr
1215 msg.Name = (*byte)(ptr)
1216 msg.Namelen = uint32(salen)
1217 var iov Iovec
1218 if len(p) > 0 {
1219 iov.Base = &p[0]
1220 iov.SetLen(len(p))
1221 }
1222 var dummy byte
1223 if len(oob) > 0 {
1224 if len(p) == 0 {
1225 var sockType int
1226 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1227 if err != nil {
1228 return 0, err
1229 }
1230 // send at least one normal byte
1231 if sockType != SOCK_DGRAM {
1232 iov.Base = &dummy
1233 iov.SetLen(1)
1234 }
1235 }
1236 msg.Control = &oob[0]
1237 msg.SetControllen(len(oob))
1238 }
1239 msg.Iov = &iov
1240 msg.Iovlen = 1
1241 if n, err = sendmsg(fd, &msg, flags); err != nil {
1242 return 0, err
1243 }
1244 if len(oob) > 0 && len(p) == 0 {
1245 n = 0
1246 }
1247 return n, nil
1248}
1249
1250// BindToDevice binds the socket associated with fd to device.
1251func BindToDevice(fd int, device string) (err error) {
1252 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1253}
1254
1255//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1256
1257func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1258 // The peek requests are machine-size oriented, so we wrap it
1259 // to retrieve arbitrary-length data.
1260
1261 // The ptrace syscall differs from glibc's ptrace.
1262 // Peeks returns the word in *data, not as the return value.
1263
1264 var buf [SizeofPtr]byte
1265
1266 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1267 // access (PEEKUSER warns that it might), but if we don't
1268 // align our reads, we might straddle an unmapped page
1269 // boundary and not get the bytes leading up to the page
1270 // boundary.
1271 n := 0
1272 if addr%SizeofPtr != 0 {
1273 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1274 if err != nil {
1275 return 0, err
1276 }
1277 n += copy(out, buf[addr%SizeofPtr:])
1278 out = out[n:]
1279 }
1280
1281 // Remainder.
1282 for len(out) > 0 {
1283 // We use an internal buffer to guarantee alignment.
1284 // It's not documented if this is necessary, but we're paranoid.
1285 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1286 if err != nil {
1287 return n, err
1288 }
1289 copied := copy(out, buf[0:])
1290 n += copied
1291 out = out[copied:]
1292 }
1293
1294 return n, nil
1295}
1296
1297func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1298 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1299}
1300
1301func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1302 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1303}
1304
1305func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1306 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1307}
1308
1309func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1310 // As for ptracePeek, we need to align our accesses to deal
1311 // with the possibility of straddling an invalid page.
1312
1313 // Leading edge.
1314 n := 0
1315 if addr%SizeofPtr != 0 {
1316 var buf [SizeofPtr]byte
1317 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1318 if err != nil {
1319 return 0, err
1320 }
1321 n += copy(buf[addr%SizeofPtr:], data)
1322 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1323 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1324 if err != nil {
1325 return 0, err
1326 }
1327 data = data[n:]
1328 }
1329
1330 // Interior.
1331 for len(data) > SizeofPtr {
1332 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1333 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1334 if err != nil {
1335 return n, err
1336 }
1337 n += SizeofPtr
1338 data = data[SizeofPtr:]
1339 }
1340
1341 // Trailing edge.
1342 if len(data) > 0 {
1343 var buf [SizeofPtr]byte
1344 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1345 if err != nil {
1346 return n, err
1347 }
1348 copy(buf[0:], data)
1349 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1350 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1351 if err != nil {
1352 return n, err
1353 }
1354 n += len(data)
1355 }
1356
1357 return n, nil
1358}
1359
1360func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1361 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1362}
1363
1364func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1365 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1366}
1367
1368func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1369 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1370}
1371
1372func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1373 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1374}
1375
1376func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1377 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1378}
1379
1380func PtraceSetOptions(pid int, options int) (err error) {
1381 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1382}
1383
1384func PtraceGetEventMsg(pid int) (msg uint, err error) {
1385 var data _C_long
1386 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1387 msg = uint(data)
1388 return
1389}
1390
1391func PtraceCont(pid int, signal int) (err error) {
1392 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1393}
1394
1395func PtraceSyscall(pid int, signal int) (err error) {
1396 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1397}
1398
1399func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1400
1401func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1402
1403func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1404
1405//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1406
1407func Reboot(cmd int) (err error) {
1408 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1409}
1410
1411func ReadDirent(fd int, buf []byte) (n int, err error) {
1412 return Getdents(fd, buf)
1413}
1414
1415//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1416
1417func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1418 // Certain file systems get rather angry and EINVAL if you give
1419 // them an empty string of data, rather than NULL.
1420 if data == "" {
1421 return mount(source, target, fstype, flags, nil)
1422 }
1423 datap, err := BytePtrFromString(data)
1424 if err != nil {
1425 return err
1426 }
1427 return mount(source, target, fstype, flags, datap)
1428}
1429
107c1cdb
ND
1430func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1431 if raceenabled {
1432 raceReleaseMerge(unsafe.Pointer(&ioSync))
1433 }
1434 return sendfile(outfd, infd, offset, count)
1435}
1436
15c0b25d
AP
1437// Sendto
1438// Recvfrom
1439// Socketpair
1440
1441/*
1442 * Direct access
1443 */
1444//sys Acct(path string) (err error)
1445//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1446//sys Adjtimex(buf *Timex) (state int, err error)
1447//sys Chdir(path string) (err error)
1448//sys Chroot(path string) (err error)
1449//sys ClockGetres(clockid int32, res *Timespec) (err error)
1450//sys ClockGettime(clockid int32, time *Timespec) (err error)
107c1cdb 1451//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
15c0b25d
AP
1452//sys Close(fd int) (err error)
1453//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1454//sys DeleteModule(name string, flags int) (err error)
1455//sys Dup(oldfd int) (fd int, err error)
1456//sys Dup3(oldfd int, newfd int, flags int) (err error)
1457//sysnb EpollCreate1(flag int) (fd int, err error)
1458//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1459//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1460//sys Exit(code int) = SYS_EXIT_GROUP
1461//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1462//sys Fchdir(fd int) (err error)
1463//sys Fchmod(fd int, mode uint32) (err error)
1464//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1465//sys fcntl(fd int, cmd int, arg int) (val int, err error)
1466//sys Fdatasync(fd int) (err error)
1467//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1468//sys FinitModule(fd int, params string, flags int) (err error)
1469//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1470//sys Flock(fd int, how int) (err error)
1471//sys Fremovexattr(fd int, attr string) (err error)
1472//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1473//sys Fsync(fd int) (err error)
1474//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1475//sysnb Getpgid(pid int) (pgid int, err error)
1476
1477func Getpgrp() (pid int) {
1478 pid, _ = Getpgid(0)
1479 return
1480}
1481
1482//sysnb Getpid() (pid int)
1483//sysnb Getppid() (ppid int)
1484//sys Getpriority(which int, who int) (prio int, err error)
1485//sys Getrandom(buf []byte, flags int) (n int, err error)
1486//sysnb Getrusage(who int, rusage *Rusage) (err error)
1487//sysnb Getsid(pid int) (sid int, err error)
1488//sysnb Gettid() (tid int)
1489//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1490//sys InitModule(moduleImage []byte, params string) (err error)
1491//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1492//sysnb InotifyInit1(flags int) (fd int, err error)
1493//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1494//sysnb Kill(pid int, sig syscall.Signal) (err error)
1495//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1496//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1497//sys Listxattr(path string, dest []byte) (sz int, err error)
1498//sys Llistxattr(path string, dest []byte) (sz int, err error)
1499//sys Lremovexattr(path string, attr string) (err error)
1500//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1501//sys MemfdCreate(name string, flags int) (fd int, err error)
1502//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1503//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1504//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1505//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1506//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1507//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1508//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1509//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1510//sys read(fd int, p []byte) (n int, err error)
1511//sys Removexattr(path string, attr string) (err error)
15c0b25d
AP
1512//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1513//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1514//sys Setdomainname(p []byte) (err error)
1515//sys Sethostname(p []byte) (err error)
1516//sysnb Setpgid(pid int, pgid int) (err error)
1517//sysnb Setsid() (pid int, err error)
1518//sysnb Settimeofday(tv *Timeval) (err error)
1519//sys Setns(fd int, nstype int) (err error)
1520
1521// issue 1435.
1522// On linux Setuid and Setgid only affects the current thread, not the process.
1523// This does not match what most callers expect so we must return an error
1524// here rather than letting the caller think that the call succeeded.
1525
1526func Setuid(uid int) (err error) {
1527 return EOPNOTSUPP
1528}
1529
1530func Setgid(uid int) (err error) {
1531 return EOPNOTSUPP
1532}
1533
1534//sys Setpriority(which int, who int, prio int) (err error)
1535//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
107c1cdb 1536//sys Signalfd(fd int, mask *Sigset_t, flags int) = SYS_SIGNALFD4
15c0b25d
AP
1537//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1538//sys Sync()
1539//sys Syncfs(fd int) (err error)
1540//sysnb Sysinfo(info *Sysinfo_t) (err error)
1541//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1542//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1543//sysnb Times(tms *Tms) (ticks uintptr, err error)
1544//sysnb Umask(mask int) (oldmask int)
1545//sysnb Uname(buf *Utsname) (err error)
1546//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1547//sys Unshare(flags int) (err error)
1548//sys write(fd int, p []byte) (n int, err error)
1549//sys exitThread(code int) (err error) = SYS_EXIT
1550//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1551//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1552
1553// mmap varies by architecture; see syscall_linux_*.go.
1554//sys munmap(addr uintptr, length uintptr) (err error)
1555
1556var mapper = &mmapper{
1557 active: make(map[*byte][]byte),
1558 mmap: mmap,
1559 munmap: munmap,
1560}
1561
1562func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1563 return mapper.Mmap(fd, offset, length, prot, flags)
1564}
1565
1566func Munmap(b []byte) (err error) {
1567 return mapper.Munmap(b)
1568}
1569
1570//sys Madvise(b []byte, advice int) (err error)
1571//sys Mprotect(b []byte, prot int) (err error)
1572//sys Mlock(b []byte) (err error)
1573//sys Mlockall(flags int) (err error)
1574//sys Msync(b []byte, flags int) (err error)
1575//sys Munlock(b []byte) (err error)
1576//sys Munlockall() (err error)
1577
1578// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1579// using the specified flags.
1580func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
107c1cdb
ND
1581 var p unsafe.Pointer
1582 if len(iovs) > 0 {
1583 p = unsafe.Pointer(&iovs[0])
1584 }
1585
1586 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
15c0b25d
AP
1587 if errno != 0 {
1588 return 0, syscall.Errno(errno)
1589 }
1590
1591 return int(n), nil
1592}
1593
1594//sys faccessat(dirfd int, path string, mode uint32) (err error)
1595
1596func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1597 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1598 return EINVAL
1599 }
1600
1601 // The Linux kernel faccessat system call does not take any flags.
1602 // The glibc faccessat implements the flags itself; see
1603 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
1604 // Because people naturally expect syscall.Faccessat to act
1605 // like C faccessat, we do the same.
1606
1607 if flags == 0 {
1608 return faccessat(dirfd, path, mode)
1609 }
1610
1611 var st Stat_t
1612 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
1613 return err
1614 }
1615
1616 mode &= 7
1617 if mode == 0 {
1618 return nil
1619 }
1620
1621 var uid int
1622 if flags&AT_EACCESS != 0 {
1623 uid = Geteuid()
1624 } else {
1625 uid = Getuid()
1626 }
1627
1628 if uid == 0 {
1629 if mode&1 == 0 {
1630 // Root can read and write any file.
1631 return nil
1632 }
1633 if st.Mode&0111 != 0 {
1634 // Root can execute any file that anybody can execute.
1635 return nil
1636 }
1637 return EACCES
1638 }
1639
1640 var fmode uint32
1641 if uint32(uid) == st.Uid {
1642 fmode = (st.Mode >> 6) & 7
1643 } else {
1644 var gid int
1645 if flags&AT_EACCESS != 0 {
1646 gid = Getegid()
1647 } else {
1648 gid = Getgid()
1649 }
1650
1651 if uint32(gid) == st.Gid {
1652 fmode = (st.Mode >> 3) & 7
1653 } else {
1654 fmode = st.Mode & 7
1655 }
1656 }
1657
1658 if fmode&mode == mode {
1659 return nil
1660 }
1661
1662 return EACCES
1663}
1664
107c1cdb
ND
1665//sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
1666//sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
1667
1668// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
1669// originally tried to generate it via unix/linux/types.go with "type
1670// fileHandle C.struct_file_handle" but that generated empty structs
1671// for mips64 and mips64le. Instead, hard code it for now (it's the
1672// same everywhere else) until the mips64 generator issue is fixed.
1673type fileHandle struct {
1674 Bytes uint32
1675 Type int32
1676}
1677
1678// FileHandle represents the C struct file_handle used by
1679// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
1680// OpenByHandleAt).
1681type FileHandle struct {
1682 *fileHandle
1683}
1684
1685// NewFileHandle constructs a FileHandle.
1686func NewFileHandle(handleType int32, handle []byte) FileHandle {
1687 const hdrSize = unsafe.Sizeof(fileHandle{})
1688 buf := make([]byte, hdrSize+uintptr(len(handle)))
1689 copy(buf[hdrSize:], handle)
1690 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
1691 fh.Type = handleType
1692 fh.Bytes = uint32(len(handle))
1693 return FileHandle{fh}
1694}
1695
1696func (fh *FileHandle) Size() int { return int(fh.fileHandle.Bytes) }
1697func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
1698func (fh *FileHandle) Bytes() []byte {
1699 n := fh.Size()
1700 if n == 0 {
1701 return nil
1702 }
1703 return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
1704}
1705
1706// NameToHandleAt wraps the name_to_handle_at system call; it obtains
1707// a handle for a path name.
1708func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
1709 var mid _C_int
1710 // Try first with a small buffer, assuming the handle will
1711 // only be 32 bytes.
1712 size := uint32(32 + unsafe.Sizeof(fileHandle{}))
1713 didResize := false
1714 for {
1715 buf := make([]byte, size)
1716 fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
1717 fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
1718 err = nameToHandleAt(dirfd, path, fh, &mid, flags)
1719 if err == EOVERFLOW {
1720 if didResize {
1721 // We shouldn't need to resize more than once
1722 return
1723 }
1724 didResize = true
1725 size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
1726 continue
1727 }
1728 if err != nil {
1729 return
1730 }
1731 return FileHandle{fh}, int(mid), nil
1732 }
1733}
1734
1735// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
1736// file via a handle as previously returned by NameToHandleAt.
1737func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
1738 return openByHandleAt(mountFD, handle.fileHandle, flags)
1739}
1740
15c0b25d
AP
1741/*
1742 * Unimplemented
1743 */
1744// AfsSyscall
1745// Alarm
1746// ArchPrctl
1747// Brk
1748// Capget
1749// Capset
1750// ClockNanosleep
1751// ClockSettime
1752// Clone
1753// EpollCtlOld
1754// EpollPwait
1755// EpollWaitOld
1756// Execve
1757// Fork
1758// Futex
1759// GetKernelSyms
1760// GetMempolicy
1761// GetRobustList
1762// GetThreadArea
1763// Getitimer
1764// Getpmsg
1765// IoCancel
1766// IoDestroy
1767// IoGetevents
1768// IoSetup
1769// IoSubmit
1770// IoprioGet
1771// IoprioSet
1772// KexecLoad
1773// LookupDcookie
1774// Mbind
1775// MigratePages
1776// Mincore
1777// ModifyLdt
1778// Mount
1779// MovePages
1780// MqGetsetattr
1781// MqNotify
1782// MqOpen
1783// MqTimedreceive
1784// MqTimedsend
1785// MqUnlink
1786// Mremap
1787// Msgctl
1788// Msgget
1789// Msgrcv
1790// Msgsnd
1791// Nfsservctl
1792// Personality
1793// Pselect6
1794// Ptrace
1795// Putpmsg
1796// Quotactl
1797// Readahead
1798// Readv
1799// RemapFilePages
1800// RestartSyscall
1801// RtSigaction
1802// RtSigpending
1803// RtSigprocmask
1804// RtSigqueueinfo
1805// RtSigreturn
1806// RtSigsuspend
1807// RtSigtimedwait
1808// SchedGetPriorityMax
1809// SchedGetPriorityMin
1810// SchedGetparam
1811// SchedGetscheduler
1812// SchedRrGetInterval
1813// SchedSetparam
1814// SchedYield
1815// Security
1816// Semctl
1817// Semget
1818// Semop
1819// Semtimedop
1820// SetMempolicy
1821// SetRobustList
1822// SetThreadArea
1823// SetTidAddress
1824// Shmat
1825// Shmctl
1826// Shmdt
1827// Shmget
1828// Sigaltstack
15c0b25d
AP
1829// Swapoff
1830// Swapon
1831// Sysfs
1832// TimerCreate
1833// TimerDelete
1834// TimerGetoverrun
1835// TimerGettime
1836// TimerSettime
1837// Timerfd
1838// Tkill (obsolete)
1839// Tuxcall
1840// Umount2
1841// Uselib
1842// Utimensat
1843// Vfork
1844// Vhangup
1845// Vserver
1846// Waitid
1847// _Sysctl